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Abstract
Leverage entails a unique set of risks, such as margin calls, which can force investors to 
liquidate securities at adverse prices. Modern Portfolio Theory (MPT) fails to account for 
these unique risks. Investors often use portfolio optimization with a leverage constraint 
to mitigate the risks of leverage, but MPT provides no guidance as to where to set the 
leverage constraint. Fortunately, MPT can be fixed by explicitly incorporating a term 
for investor leverage aversion, as well as volatility aversion, allowing each investor 
to determine the right amount of leverage given that investor’s preferred trade-offs 
between expected return, volatility risk and leverage risk. Incorporating leverage 
aversion into the portfolio optimization process produces portfolios that better reflect 
investor preferences. Furthermore, to the extent that portfolio leverage levels are 
reduced, systemic risk in the financial system may also be reduced.

1 This article is based on a presentation given at a conference of the Jacobs Levy Equity Management Center for  
Quantitative Financial Research of the Wharton School, held in New York City, 23 October 2013. Slides and video  
of the talk, entitled “Leverage aversion — a third dimension in portfolio theory and practice,” are available at:  
http://jacobslevycenter.wharton.upenn.edu/conference/forum-2013/  
The authors thank Judy Kimball and David Landis for their editorial assistance.
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Modern Portfolio Theory (MPT) asserts that investors prefer 
portfolios with higher expected returns and lower volatility. 
Holding a diversified set of assets generally lowers volatility 
because the price movements of individual assets within a 
portfolio are partially offsetting; as the price of one security 
declines, for example, the price of another may rise. As a result, 
the value of the portfolio tends to vary less than the volatility of 
its individual assets would suggest.

When Harry Markowitz first advanced this theory in 1952, 
leverage — that is, borrowing — was not commonly used in 
investment portfolios [Markowitz (1952) and Markowitz 
(1959)]. Since then, we have witnessed the rising popularity of 
instruments that allow high levels of portfolio leverage, such as 
structured finance products, futures and options. We have also 
seen increased borrowing of securities to effect short sales2 
and borrowing of cash to purchase securities [Jacobs and Levy 
(2013a)].

A portfolio with leverage differs in a fundamental way from a 
portfolio without leverage. Consider two portfolios having the 
same expected return and volatility. One uses leverage while 
the other is unleveraged. These portfolios may appear equally 
desirable, but they are not, because the leveraged portfolio is 
exposed to a number of unique risks. During market declines, an 
investor who has borrowed cash to purchase securities may face 
margin calls from lenders (demands for collateral payments) just 
when it is difficult to access additional cash; this investor might 
then have to sell assets at adverse prices due to illiquidity.3 When 
markets rise, short-sellers may have to pay elevated prices to 
repurchase securities that have been sold short, thus incurring 
losses. Furthermore, leverage raises the possibilities of losses 
exceeding the capital invested and, for borrowers unable to cover 
obligations, bankruptcy [Jacobs and Levy (2012)].4 Leverage can 
thus have significant adverse effects on portfolio value.

2 A short sale is a technique for profiting from a stock’s price decline. Typically, a short-seller 
borrows stock shares from a broker and immediately sells them, hoping to repurchase them 
later at a lower price. The repurchased shares are then returned to the broker.

3 Leverage and illiquidity are different because illiquid portfolios without any leverage are not 
exposed to margin calls and cannot lose more than the capital invested. Note that leverage 
increases portfolio illiquidity.

4 Certain legal entities, such as limited partnerships and corporations, can limit investors’ losses 
to their capital in the entity. Losses in excess of capital would be borne by others, such as 
general partners who have unlimited liability or prime brokers.

In extreme cases, the adverse consequences of leverage can 
spread beyond the portfolio in question and impact the stability 
of markets and even the economy. In 1929, individual investors 
borrowing on margin were forced to sell in order to meet margin 
calls, exacerbating the stock market’s decline [Jacobs (1999)]. 
In 1998, the unraveling of the hedge fund Long-Term Capital 
Management, which aimed for a leverage ratio of 25:1, roiled 
stock and bond markets [Jacobs and Levy (2005)]. In the 
summer of 2007, losses at a number of large, highly leveraged 
hedge funds led to problems for quantitative managers holding 
similar positions [Khandani and Lo (2007)]. And, of course, the 
2008 financial crisis, with its deleterious effects on economies 
worldwide, was precipitated by the collapse of a highly leveraged 
housing sector, the highly leveraged debt instruments supporting 
it and the highly leveraged Wall Street firms, Bear Stearns and 
Lehman Brothers [Jacobs (2009)].

Given these risks, rational investors would prefer an unleveraged 
portfolio to a leveraged portfolio that offers the same expected 
return and level of volatility risk. In other words, investors behave 
as if they are leverage averse. The question is, how can this 
leverage aversion be incorporated into the portfolio optimization 
process to identify the best portfolio?

This article considers various methods for doing so. We first look 
at the conventional portfolio construction method based on MPT, 
known as mean-variance (MV) optimization. We will see that 
conventional MV optimization fails to account for the unique risks 
of leverage, and hence cannot help an investor determine the 
right amount of leverage. We next look at the traditional way of 
controlling leverage within the MV optimization framework — the 
addition of a leverage constraint. We show that this approach also 
gives investors no guidance as to the appropriate leverage level.

We then extend MV optimization with an additional term 
that explicitly includes investor tolerance for leverage. Mean-
variance-leverage (MVL) optimization allows each investor 
to determine the right amount of portfolio leverage, given 
that investor’s preferred trade-offs between expected return, 
volatility risk and leverage risk. We will demonstrate that MVL 
optimization provides a more useful guide for investors who are 
averse to leverage. 
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The limitations of mean-variance optimization
Let us begin by defining the components of the MV optimization 
process. Mean is a measure of the average expected return to 
a security or portfolio. Variance and its square root, standard 
deviation, measure the extent to which returns vacillate around 
the average return. The term “volatility” can be used for either 
measure.

The MV optimization process considers the means and variances 
of securities, taking into account their covariances (the way in 
which a given security’s return is related to the returns of the 
other securities). Individual securities are selected and weighted 
to generate efficient portfolios. Each efficient portfolio offers 
the maximum expected return for a given level of variance (or, 
stated another way, the minimum variance for a given level of 
expected return). These efficient portfolios, offering a continuum 
of expected returns for a continuum of variance levels, constitute 
the “efficient frontier.”

Which portfolio along this efficient frontier is optimal for a 
given investor will depend upon the investor’s tolerance for (or, 
inversely, aversion to) volatility. In MV optimization, portfolio 
optimality is determined by using a utility function that represents 
the investor’s preferred trade-off between expected return and 
volatility risk: 

     (1)

Here, U is a measure of the “utility” of the portfolio to a specific 
investor, where utility can be thought of as the extent to which 
the portfolio satisfies the investor’s preferences. The term  is 
the portfolio’s expected active return, or the difference between 
the portfolio’s expected return and that of the benchmark. The 
term  is the variance of the portfolio’s active return. The term  
in the denominator represents the investor’s tolerance for active 
return volatility. The lower the investor’s tolerance for volatility, 
the greater the penalty for portfolio volatility. The aim of MV 
optimization is to find the portfolio having values of expected 
active return and volatility that maximize U, given the investor’s 
volatility tolerance. 

The MV utility function allows investors to balance their desire 
for higher returns against their dislike of volatility risk. It says 
little about leverage. To the extent leverage increases portfolio 

volatility, traditional MV optimization recognizes some of the 
risks associated with leverage.5 But it fails to recognize the 
unique risks of leverage noted above. In effect, MV optimization 
implicitly assumes that investors have an infinite tolerance for (or 
inversely, no aversion to) the unique risks of leverage. As a result, 
it can produce “optimal” portfolios that have very high levels of 
leverage.

Below, we will show how investors using MV optimization usually 
control portfolio leverage. We will then introduce a more useful 
method that considers the economic trade-offs when leverage 
tolerance is incorporated into the utility function.6

Mean-variance optimization with leverage constraints
Throughout this paper, we will use enhanced active equity (EAE) 
portfolios for illustration. EAE portfolios allow for short sales 
equal to some percentage of capital. Short-sale proceeds are then 
used to buy additional securities long beyond 100% of capital. For 
example, securities equal to 30% of capital are sold short and the 
proceeds are used to increase long positions by 30%, to 130%. 
This enhancement of 30% incremental long positions and 30% 
incremental short positions gives rise to an enhanced active 130-
30 portfolio, with leverage of 60% and enhancement of 30%. Net 
exposure to the equity benchmark portfolio is 100% (130% long 
minus 30% short) [Jacobs and Levy (2007)]. 

Using daily returns for stocks in the S&P 100 index over the two-
year period ending 30 September 2011, we estimate expected 
active returns (versus the S&P 100 benchmark), variances, 
covariances and security betas [Jacobs and Levy (2012)]. To 
ensure adequate diversification, we constrain each security’s 
active weight (the difference between its weight in the portfolio 
and its weight in the benchmark) to be within plus-or-minus 10% 
of its weight in the benchmark. To simplify the discussion, we 
assume the strategy is self-financing (although in practice there 
would be financing costs such as stock loans fees, with higher 
fees for hard-to-borrow stocks).

5 In a section entitled “The effect of leverage,” Kroll et al. (1984) stated: “Leverage increases 
the risk of the portfolio. If the investor borrows part of the funds invested in the risky portfolio, 
then the fluctuations of the return on these leveraged portfolios will be proportionately 
greater.” In the present article, we consider other risks unique to using leverage and the trade-
offs between expected return, volatility risk and leverage risk.

6 Markowitz (2013), in response to Jacobs and Levy (2013b), suggested another method: a 
stochastic margin call model (SMCM) to anticipate portfolio margin calls. However, such a 
model is yet to be developed. For a response to this suggestion, see Jacobs and Levy (2013c).
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We will first look at EAE portfolios that are considered optimal 
using an MV utility function. As noted above, MV optimization 
implicitly assumes infinite tolerance for the unique risks of 
leverage. In order to control portfolio leverage, investors using 
MV optimization typically add a constraint on leverage; for 
example, leverage may be constrained to equal 20% of capital.7 

Figure 1 shows six efficient frontiers from MV optimizations 
subject to leverage constraints of 0%, 20%, 40%, 60%, 80% and 
100%.8 These leverage levels, represented by the Greek symbol Λ, 
correspond to enhancements ranging from 0% (an unleveraged, 
long-only portfolio) to 50% (a 150-50 EAE portfolio). To trace out 
each of these efficient frontiers, we assume that volatility  
 

7 Markowitz (1959) shows how to use individual security and portfolio constraints in MV 
optimization. A leading provider of portfolio optimization software, MSCI Barra, permits the 
user to apply such constraints. The software allows users to tilt their portfolios toward specific 
leverage targets for compliance, regulatory or investment policy reasons [Stefek et al. (2012)]. 
MSCI Barra suggests using a leverage-constrained range or a penalty for deviations from the 
leverage constraint, rather than using a fixed leverage constraint, to allow the optimizer some 
flexibility to determine a more optimal portfolio [Liu and Xu (2010)]. However, this approach 
provides no guidance as to where to set the leverage-constrained range or how to determine 
the penalty. Moreover, MSCI Barra’s definition of the optimal portfolio considers volatility risk, 
without consideration of the unique risks of leverage [Melas and Suryanarayanan (2008)].

8 The frontiers are also subject to the standard EAE constraints requiring that the portfolio be 
fully invested and have a beta of 1 relative to the benchmark.

tolerance ranges in value from near 0 (little volatility tolerance)  
to 2 (higher volatility tolerance).9

As the investor’s tolerance for volatility increases, the optimal 
portfolio moves out along each frontier, incurring higher levels 
of volatility (measured here as standard deviation of active 
return) to achieve higher levels of expected active return. Also 
note that the frontiers representing higher levels of leverage (or 
enhancement) dominate (lie above) those representing lower 
levels of leverage. This means that for any given level of volatility, 
a higher leverage level results in a higher expected return. Based 
on MV utility, an investor would prefer the 150-50 EAE frontier 
to the 140-40 EAE frontier, and so on, with the 100-0 (long-only) 
frontier being the least desirable.

Figure 1 identifies the portfolio on each of these six efficient 
frontiers that is optimal for an MV investor with a volatility 
tolerance of 1. We will refer to such investors as MV(1) investors, 
to their preferred portfolios as MV(1) optimal portfolios and to 
the utility derived from these portfolios as MV(1) utility. The 
MV(1) portfolios are labeled “a” through “f.” For instance, “c” is 
the portfolio on the 120-20 frontier that offers the highest utility 
for an MV(1) investor.

The solid line in Figure 2 (below)  plots the MV(1) utility of 
optimal portfolios with the 10% security active-weight constraint 
as the enhancement (one-half of leverage) is increased from 
0% to beyond 400%. Portfolios “a” through “f” are the same 
leverage-constrained portfolios depicted in Figure 1. Portfolio 
“z” represents the optimal MV(1) portfolio when there is no 
constraint on leverage. This point corresponds to a 492-392 
portfolio with enhancement of 392% and leverage of 7.84 times 
net capital. The portfolio’s expected active return falls sharply 
after portfolio leverage (enhancement) reaches this level. Further 
leverage would require taking positions in securities whose 
expected active returns would reduce portfolio expected return, 
since the most attractive securities would already be held at their 
maximum constrained weights. 

The dashed line in Figure 2 plots the utility of MV(1) optimal 
portfolios when there are no security active-weight constraints. 

9 A volatility tolerance of 1 produces results consistent with those of a utility function often used 
in the finance literature [Levy and Markowitz (1979)].
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The MV(1) optimal portfolio with no leverage constraint peaks 
at an extremely high leverage level, one that is literally off the 
chart. This is a 4,650-4,550 EAE portfolio with an enhancement 
of 4,550% and leverage of 91 times net capital. The amount of 
leverage the MV(1) optimal portfolio takes on is not unlimited, 
even though we assume no financing costs: as the portfolio’s 
volatility continues to rise with greater leverage, the volatility-
aversion term in the MV utility function eventually reduces utility 
by more than the expected-return term increases utility; thus 
utility reaches a maximum, although at an extremely high level  
of leverage.

Table 1 (overleaf) gives the characteristics of those MV(1) optimal 
portfolios with security active-weight constraints identified in 
Figure 2. Standard deviation of active return, expected active 
return and utility all increase with the amount of leverage. Of 
the portfolios “a” through “f,” portfolio “f,” the 150-50 portfolio, 
offers the highest MV(1) utility. But the extremely leveraged 
portfolio “z,” the 492-392 portfolio, offers the highest utility of  
all the MV(1) optimal portfolios.

Conventional MV analysis implicitly assumes that investors have no 
aversion to the unique risks of leverage. And while an investor can 
select a portfolio different from “z” at a lower level of leverage, MV 
optimization offers no guidance as to where to set that level.

Mean-variance-leverage optimization
The lack of consideration of the unique risks of leverage in 
conventional MV optimization motivated us to develop the MVL 
model, which incorporates investor leverage tolerance. The MVL 
utility function, shown below, contains terms for the portfolio’s 
expected active return and the investor’s tolerance for variance 
of active return, as in Equation (1).10 However, it also contains a 
third term that allows for expression of the investor’s leverage 
tolerance:11 

              (2)

The symbol  represents the variance of the leveraged portfolio’s 
total return. When it comes to leverage, the portfolio’s total-
return variance matters, because it is the volatility of the total 
return that can give rise to margin calls. Leverage, , is squared 
because the risk of a margin call increases at an increasing rate 
as portfolio leverage increases, just as margin call risk increases 
at an increasing rate as portfolio total volatility increases. 
The leverage and total-variance terms are multiplied because 
leveraging more-volatile stocks entails a higher risk of margin 
calls than leveraging less-volatile stocks. The symbol  stands for 
the investor’s leverage tolerance and is analogous to , investor 
volatility tolerance.

One way to use the MVL utility function is to calculate the utility 
that a leverage-averse investor would obtain from MV optimal 
portfolios. Consider the MV(1) optimal portfolios “a” through 
“f” from Figure 1. Figure 3 (overleaf) plots the MVL utilities 
of these portfolios for an investor with volatility-tolerance and 

10 The use of σP
2 as the measure of volatility risk is appropriate if active returns are normally 

distributed and the investor is averse to the variance of active returns, as well as for certain 
concave (risk-averse) utility functions [Levy and Markowitz (1979)]. If the return distribution is 
not normal, displaying skewness or kurtosis (“fat tails”) for instance, or the investor is averse 
to downside risk (semi-variance) or value at risk (VaR), the conclusions of this article still hold. 
That is, the investor should include a leverage-aversion term in the utility function, along 
with the appropriate measure of volatility risk, with neither risk term necessarily assuming 
normality. Leverage may give rise to fatter tails in returns. For example, a drop in a stock’s 
price may trigger margin calls, which may result in additional selling, while an increase in a 
stock’s price may lead investors to cover short positions, which can make the stock’s price 
rise even more. Note that, if volatility risk is measured as the variance of total returns (such 
as for an absolute-return strategy) rather than as the variance of active returns, the general 
conclusions of this article still hold.

11 We assume that investors have the same aversion to leveraged long positions that they have 
to short positions. This assumption may not be the case in practice, because short positions 
have potentially unlimited liability and are susceptible to short squeezes. One could model 
the aversion to long and short positions asymmetrically, but this would have complicated the 
algebra, so for simplicity we used a common leverage tolerance [Jacobs and Levy (2012)].
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leverage-tolerance levels of 1. We will refer to investors with these 
tolerances as MVL(1,1) investors, to their preferred portfolios as 
MVL(1,1) optimal portfolios and to the utility they derive from 
these portfolios as MVL(1,1) utility.

In order to create the curve shown in Figure 3, we determined 
more than 1,000 optimal MV(1) EAE portfolios by increasing the 
leverage constraint from 0% to more than 100% in increments of 
0.1% (corresponding to enhancements ranging from 0% to more 
than 50% in increments of 0.05%). We maintained the 10% active-
weight constraint on each security. 

The resulting arch-shaped curve in Figure 3 peaks at portfolio 
“g,” a 129-29 EAE portfolio. This portfolio offers the MVL(1,1) 
investor the highest utility. The peak in investor utility occurs 
because, as the portfolio’s enhancement increases beyond that  
of portfolio “g,” the leverage-aversion and volatility-aversion 
terms reduce utility by more than the expected-return term 
increases utility. 

Table 2, below, displays these portfolios’ characteristics. Although 
the standard deviation of active return and expected active return 
increase with leverage (note that they have the same values as in 
Table 1), investor utility does not.12 For our MVL(1,1) investor, the 
optimal portfolio “g” corresponds to an optimal MV(1) portfolio 
with leverage constrained to 58% (29% enhancement). Other 

12 Note that the expected active returns shown do not reflect any costs associated with leverage-
related events, such as forced liquidation at adverse prices or bankruptcy. These costs, 
however, are reflected in the disutility implied by the leverage-aversion term.

leverage constraints provide less utility because they are either 
too tight (less than 58%) or too loose (greater than 58%).

By considering numerous optimal MV(1) portfolios — each 
constrained at a different leverage level — and applying an 
MVL(1,1) utility function to evaluate each portfolio, we are able to 
determine which MV(1) portfolio offers an MVL(1,1) investor the 
highest utility. MV optimization cannot locate this highest-utility 
portfolio if the leverage-averse investor’s MVL utility function is 
not known.
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Figure 3: MVL(1,1) utility of optimal MV(1) portfolios as a function of 
enhancement
Source: Jacobs and Levy (2014)

Portfolio EAE Leverage Standard deviation of 
active return

Expected active return Utility for an MV(1) 
investor

a 100-0 0 4.52 2.77 2.67

b 110-10 0.2 4.91 3.27 3.15

c 120-20 0.4 5.42 3.76 3.61

d 130-30 0.6 5.94 4.23 4.06

e 140-40 0.8 6.53 4.70 4.48

f 150-50 1.0 7.03 5.14 4.90

z 492-392 7.84 15.43 11.55 10.36

Table 1: Characteristics of optimal MV(1) portfolios from the perspective of an MV(1) investor
Source: Jacobs and Levy (2014)
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Optimal mean-variance-leverage portfolios and efficient 
frontiers
Rather than finding the MVL( , ) utilities of numerous 
leverage-constrained MV( ) portfolios, the investor can take 
the more direct approach of using MVL( , ) optimization 
directly. With MVL optimization, investors gain the ability to 
trade off expected return against volatility risk and leverage risk 
[Jacobs and Levy (2013b)]. As we will see, the results of MVL 
optimization will not coincide with the results of MV optimization, 
except in a few special cases. 

Figure 4 shows the efficient frontier based on MVL optimization 
for a range of investor volatility tolerances (0 to 2) when leverage 
tolerance is 0 (  = 0) and there is a 10% constraint on security 
active weights. When no leverage is tolerated, all the efficient 
portfolios are long-only portfolios. The efficient frontier begins 
at the origin, corresponding to the efficient portfolio when 
volatility tolerance is zero; this portfolio is an index fund with 
zero expected active return and zero standard deviation of active 
return. As the volatility increases, the frontier rises at a declining 
rate, and efficient portfolios take more concentrated positions 
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Portfolio EAE Leverage Standard deviation of 
active return

Expected active return Utility for an MVL(1,1) 
investor

a 100-0 0 4.52 2.77 2.67

b 110-10 0.2 4.91 3.27 3.08

c 120-20 0.4 5.42 3.76 3.32

g 129-29 0.58 5.89 4.18 3.39

d 130-30 0.6 5.94 4.23 3.38

e 140-40 0.8 6.53 4.70 3.27

f 150-50 1.0 7.03 5.14 2.97

Table 2: Characteristics of optimal MV(1) portfolios from the perspective of an MVL(1,1) investor
Source: Jacobs and Levy (2014)
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in securities with higher expected returns. In all cases, however, 
the leverage level remains 0; every portfolio along the frontier 
is a 100-0 portfolio, meaning it is invested 100% long, with no 
short or leveraged long positions. The MVL-efficient frontier with 
zero leverage tolerance and the MV-efficient frontier with a zero-
leverage constraint are identical.13 

Figure 5, above, illustrates the efficient frontier based on MVL 
optimization over the same range of volatility-tolerance levels 
when leverage tolerance is 1 (  = 1). Again, individual security 
positions are subject to the 10% active-weight constraint. Here, 
increasing volatility is accompanied by increasing leverage. The 
portfolios on the frontier go from 0 leverage to enhanced active 
portfolios of 110-10 to 130-30. From a comparison with Figure 
4 (0 leverage tolerance), it can be seen that leverage allows a 
higher return at any given volatility level. Higher return and 
volatility risk can be achieved with less concentration of positions 
when leverage is allowed than when leverage is not allowed. For 
an investor with leverage tolerance of 1, any of the portfolios on 
the Figure 5 frontier can be optimal, depending on the investor’s 
level of volatility tolerance. 

13 The MVL utility function (Equation 2) reduces to the MV utility function (Equation 1) as the 
investor’s leverage tolerance, τL, approaches zero.

Figure 6 illustrates the efficient frontier across a range of 
volatility tolerances when leverage tolerance is infinite ( ). 
As the investor’s volatility tolerance increases, the portfolios on 
the frontier go from 0 leverage to enhanced active portfolios 
of 200-100 to 400-300. Relative to the investor with leverage 
tolerance of 1 (Figure 5), the investor with infinite leverage 
tolerance can achieve a higher expected return at any given level 
of volatility, albeit with increasing leverage risk. As discussed 
earlier, conventional MV optimization implicitly assumes investors 
have infinite tolerance for the unique risks of leverage; thus the 
MV-efficient frontier is identical to the MVL-efficient frontier when 
MVL optimization is based on infinite leverage tolerance.14

Figure 7 illustrates the efficient frontier based on MVL 
optimization when investor leverage tolerance is infinite ( ) 
and when there are no constraints on individual security active 
weights. Again, leverage increases as volatility tolerance 
increases. Because each portfolio holds the same set of active 
positions at increasing levels of leverage, the efficient frontier 
is simply a straight line. Ever-higher levels of leverage are used 
to achieve ever-higher expected return along with ever-higher 

14 The MVL utility function (Equation 2) reduces to the MV utility function (Equation 1) as the 
investor’s leverage tolerance, τL, increases without limit.
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standard deviation of return. As with Figure 6, MVL optimization 
results in the same frontier as MV optimization, since the investor 
is assumed to have infinite leverage tolerance. The assumption of 
infinite leverage tolerance inherent in MV optimization can give 
rise to portfolios with unrealistically high levels of leverage.

Figure 8 displays efficient frontiers based on MVL optimization 
for a range of investor volatility tolerances (0 to 2) and leverage-
tolerance levels corresponding to 0 (the same as in Figure 4), 
0.5, 1.0 (the same as Figure 5), 1.5 and 2.0. Each frontier 
corresponds to one of these leverage-tolerance levels. Again, 
zero leverage tolerance represents an investor unwilling to use 
leverage, and higher efficient frontiers correspond to investors 
with greater tolerances for leverage. The 10% security active-
weight constraint applies to all the portfolios. 

It might at first appear that the highest level of leverage tolerance 
results in the dominant efficient frontier; that is, higher leverage 
allows the investor to achieve higher expected returns at any 
given level of volatility. But when leverage aversion is considered, 
the optimal portfolio may lie on other frontiers, depending on the 
investor’s level of leverage tolerance.

Consider, for example, the three portfolios represented by 

the points labeled A, B and C in Figure 8. These portfolios’ 
characteristics are provided in Table 3. Portfolio A is optimal for 
Investor A, who has a leverage tolerance ( ) of 1 and a volatility 
tolerance ( ) of 0.24. This is a 125-25 portfolio with a standard 
deviation of active return (σP) of 5% and an expected active return 
( ) of 3.93%.

The last column of Table 3 shows that Investor A’s utility (UA) 
of Portfolio A is 2.93. In other words, Investor A is indifferent 
between Portfolio A, which has an expected active return 
of 3.93% along with volatility risk and leverage risk, and a 
hypothetical portfolio with a certain active return of 2.93% and 
no volatility or leverage risk. Put another way, it takes one full 
percentage point of additional return to get Investor A to accept 
the added volatility and leverage risk of Portfolio A in lieu of the 
hypothetical riskless portfolio.

Portfolio B offers a higher expected active return than Portfolio 
A (4.39% versus 3.93%) at the same volatility-risk level. But it is 
only optimal for an investor with a leverage tolerance of 2 and 
volatility tolerance of 0.14; it is suboptimal for Investor A, who 
has a lower leverage tolerance of 1. Portfolio B represents a 
139-39 enhanced active portfolio; it entails significantly more 
leverage than the 125-25 Portfolio A.

For Investor A, the utility of Portfolio B is 2.72, lower than 
the 2.93 utility of Portfolio A. This investor’s desire to avoid 
additional leverage risk more than offsets the benefit of the 
incremental expected return. 

Finally, consider Portfolio C, which has the same 3.93% expected 
active return as Portfolio A. This is the optimal portfolio for 
an investor who has a leverage tolerance of 2 and a volatility 
tolerance of 0.09. In a traditional MV framework, this portfolio 
dominates Portfolio A because it offers the same expected 
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Figure 8: MVL-efficient frontiers for various leverage-tolerance cases with the 
10% security active-weight constraint 
Source: Jacobs and Levy (2013b)

τL τV EAE σP αP UA

A 1.00 0.24 125-25 5.00 3.93 2.93

B 2.00 0.14 139-39 5.00 4.39 2.72

C 2.00 0.09 135-35 4.21 3.93 2.68

Table 3: Characteristics of MVL (τV , τL) portfolios A, B and C
Source: Jacobs and Levy (2013b)
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return at a lower standard deviation of active return. But it is 
nevertheless suboptimal for Investor A, who has a leverage 
tolerance of 1, for the same reason that Portfolio B is suboptimal: 
it entails more leverage than Portfolio A, 135-35 versus 125-25. 
Again, for Investor A, the lower expected volatility of Portfolio 
C is not enough to compensate for the increase in leverage risk. 
Investor A receives utility of 2.68 from Portfolio C, lower than the 
2.93 from Portfolio A.

The mean-variance-leverage-efficient region
The traditional MV-efficient frontier depicts the two-dimensional 
trade-off between mean and variance. MVL optimization adds a 
third dimension, leverage, allowing for trade-offs between mean, 
variance and leverage. Figure 9 depicts an efficient region of 
these trade-offs for investors with volatility tolerances between 
0 and 2 and leverage tolerances between 0 and 2. There are no 
constraints on security weights.

Which portfolio is optimal for a given investor depends on the 
investor’s tolerances for volatility risk and leverage risk. Figure 
9 illustrates two-dimensional MV-efficient frontiers for several 
leverage-tolerance levels (the grey curved lines) and two-
dimensional MV-efficient frontiers for several volatility-tolerance 

levels (the colored curved lines).15 The MVL optimal portfolio 
for a leverage-averse investor is at the intersection of the 
efficient frontier for the investor’s volatility-tolerance level and 
the efficient frontier for the investor’s leverage-tolerance level. 
For example, the MVL(1,1) optimal portfolio is found where the 
efficient frontier for a leverage tolerance of 1 (  = 1) intersects 
with the black-colored frontier representing a volatility tolerance 
of 1 (  = 1).

The mean-variance-leverage-efficient surface 
A three-dimensional depiction of the MVL-efficient surface 
is presented in Figure 10. This surface was generated from 
10,000 MVL optimizations using 100 ×100 pairs of volatility and 
leverage tolerances covering a range of values from 0.001 to 2 
[Jacobs and Levy (2014)]. Note that the figure has three axes, 
one for volatility tolerance, one for leverage tolerance and one for 
level of enhancement (one-half of leverage). The optimal level of 
enhancement emerges from an MVL optimization that considers 
both volatility tolerance and leverage tolerance.16

When leverage tolerance is zero, the optimal portfolios lie along 
the volatility-tolerance axis, having no leverage and hence 
no enhancement. They are long-only portfolios, taking active 
positions in accordance with the investor’s level of volatility 
tolerance. In this case, the same portfolios would be generated 
by either MV optimization or MVL optimization. As the investor’s 
leverage tolerance increases, however, the optimal level of 
enhancement increases at a slowly declining rate of increase. 

When volatility tolerance is zero, the portfolios lie along the 
leverage-tolerance axis, having no active return volatility and hence 
holding benchmark weights in each security (an index fund). Again, 
either MV optimization or MVL optimization will produce the same 
portfolio. As investor volatility tolerance increases, however, the 
optimal level of enhancement picks up rapidly.

15 Because Figure 9 assumes no constraint on security active weights, each curve linking the 
optimal portfolios for an investor with a particular leverage tolerance level is smooth (unlike in 
Figure 8). Furthermore, without security active-weight constraints, both the standard deviation 
of active return and the expected active return for each efficient frontier range higher than in 
Figure 8.

16 To estimate their tolerances for volatility and leverage, investors could select different 
portfolios from the efficient surface, and for each portfolio run a Monte Carlo simulation that 
generates a probability distribution of ending wealth. Investors could then infer their volatility 
and leverage tolerances based on their preferred ending wealth distribution. Alternatively, 
investors could use asynchronous simulation, which can account for the occurrences of margin 
calls, including security liquidations at adverse prices [Jacobs et al. (2004, 2010)].

Figure 9: MVL-efficient region for various leverage and volatility-tolerance cases 
with no security active-weight constraint
Source: Jacobs and Levy (2013b)
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Another way to look at the relationships between optimal 
enhancement and volatility and leverage tolerances is to take 
horizontal cuts through the MVL-efficient surface. Figure 11 
provides a contour map of such cuts, with the color of each line 
corresponding to the same-colored enhancement on the MVL-
efficient surface in Figure 10. Each line shows the combinations 
of volatility tolerance and leverage tolerance for which a given 
level of enhancement is optimal. For example, the 20% line shows 
the various combinations of volatility and leverage tolerances 
that lead to a 20% optimal enhancement. Optimal enhancement 
increases with leverage tolerance, but is approximately 
independent of volatility tolerance, if the latter is large enough. 

The two solid black lines drawn over the efficient surface in 
Figure 10 and the contour map in Figure 11 correspond to 
optimal portfolios for investors having a volatility tolerance 
of 1 (and a range of values of leverage tolerance) and those 
for investors having a leverage tolerance of 1 (and a range of 
values of volatility tolerance). The MVL(1,1) optimal portfolio 
would lie at the intersection of these two lines. In both figures, 
this portfolio is labeled “G.” The enhancement for this optimal 
portfolio is 29%, resulting in a 129-29 EAE portfolio. This 
portfolio provides the MVL(1,1) investor the highest utility of  
all the portfolios on the efficient surface.

Portfolio “G,” the optimal MVL(1,1) portfolio, has the same 
enhancement level as portfolio “g” in Figure 3. It also has 
the same standard deviation of active return and expected 
active return. In fact, portfolios “G” and “g” are identical: that 
is, they have the same holdings, and hence the same active 
weights. Portfolio “g,” however, was determined by considering 
numerous leverage-constrained MV(1) optimal portfolios and 
selecting the one that has the highest utility for an MVL(1,1) 
investor, according to an MVL utility function. In contrast, 
portfolio “G” was determined directly from an MVL(1,1) 
optimization, without the need for a leverage constraint.

The solid black line representing MVL optimal portfolios on the 
efficient surface or contour map at a volatility tolerance of 1 can 
be extended for levels of leverage tolerance beyond 2. Consider 
an MVL(1,∞) investor — that is, an investor with infinite leverage 
tolerance, or no leverage aversion. This investor is identical to 
an MV(1) investor with no leverage constraint. Now consider 
subjecting this investor to a leverage constraint, such that 
enhancement is required to equal 29%. With this constraint, 
portfolio “G” is the optimal portfolio for an MV(1) investor, as  
it is for a leverage-unconstrained MVL(1,1) investor.

Alternatively, consider the yellow 29% contour line in Figure 11 
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Underlying portfolio volatility

Low
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Portfolio leverage
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Long-only index fund

Enron employee’s single-stock holding
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LTCM’s leveraged low-risk arbitrage positions

CEO’s leveraged Chesapeake energy stock

(or the dashed line in Figure 10).17 This contour represents all 
portfolios on the efficient surface that have an enhancement 
of 29%. When the enhancement is constrained to equal 29%, 
the optimal portfolio must be somewhere on the 29% contour. 
Optimal portfolios for investors with a volatility tolerance of 1 

17 To the right of portfolio “G” in Figure 10, the dashed line is slightly below the solid line, but is 
visually indistinguishable from it.

(whatever their leverage tolerance) lie on the solid black vertical 
line representing a volatility tolerance of 1. Thus, portfolio 
“G” (the point at which the 29% contour intersects the solid 
vertical line representing a volatility tolerance of 1) is optimal 
for an MV(1) investor who constrains the enhancement at 29%. 
Portfolios that are on the 29% contour, but not on the solid 
vertical line (representing a volatility tolerance of 1) would have 
lower utility than portfolio “G,” because the implied volatility 
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tolerance of those portfolios would either be less than or greater 
than 1, departing from the investor’s volatility tolerance.

Optimal mean-variance-leverage portfolios versus optimal 
mean-variance portfolios
As we have discussed, as leverage tolerance approaches infinity, 
the optimal MVL portfolios approach those determined by a 
conventional MV utility function. Figure 12 shows characteristics 
of optimal MVL(1, ) portfolios, with security active-weight 
constraints, as investor leverage tolerance, , increases from 
near 0 to 1,000. The characteristics displayed are enhancement, 
standard deviation of active return, expected active return 
and MVL(1, ) utility. The horizontal lines represent the levels 
associated with the optimal MV(1) portfolio “z” shown in Table 1. 

All the characteristics initially rise rapidly and continue to 
increase, at a declining rate, as they converge to those of 
portfolio “z” as leverage tolerance approaches infinity. Except in 
the case of extreme leverage tolerance, the characteristics of the 
optimal MVL(1,  ) portfolios are quite different from those of the 
optimal MV(1) portfolio, which are represented by the horizontal 
lines. Figure 12 shows that only by assuming an unreasonably 
large value for leverage tolerance would the solution to the 
MVL(1,  ) problem be close to that of the MV(1) portfolio. 

Volatility and leverage in real-life situations  
The optimal level of leverage in a portfolio is more than a 
theoretical concern. Figure 13 illustrates examples of various 
real-life combinations of volatility and leverage, ranging from 
the safe to the perilous. 

The top left of the figure, with low volatility and low leverage, is a 
long-only index fund. It represents the “safe” extreme, having no 
leverage and no active-return volatility.

At the bottom left, illustrating low volatility and high leverage,  
is the strategy pursued by Long-Term Capital Management 
(LTCM), the hedge fund that imploded in 1998. Its underlying 
holdings were supposedly low-risk arbitrage positions; however, 
the strategies were highly leveraged using shorting, borrowing 
and derivatives.

High volatility, even at low leverage levels, illustrated at top right, 
can also be perilous, as employees of Enron, the failed energy 
company, discovered. Many of them invested their savings in 
the company’s stock. When Enron declared bankruptcy in 2001, 
those employees learned how risky a volatile, undiversified 
portfolio can be.

The high-volatility, high-leverage extreme, at bottom right, is 
illustrated by the strategy followed by the chief executive officer 
of Chesapeake Energy. He borrowed on margin to leverage his 
bet on the company’s stock. Falling prices forced him to sell his 
leveraged position at a loss of nearly U.S.$2 billion in 2008.

Presumably, most of us are not at the extremes of either volatility 
or leverage, although we may have some leverage (a home 
mortgage, for example) and some volatile securities. The key is 
to make the optimal trade-off between expected return, volatility 
risk and leverage risk.

Conclusion
Using the MV model, an investor can address volatility 
tolerance and optimize a portfolio to provide the maximum 
level of expected return for any given level of volatility risk. Or 
alternatively, an investor can optimize a portfolio to provide the 
minimum level of volatility risk for any desired level of expected 
return. In either case, tolerance for the unique risks of leverage is 
not addressed, and MV optimal portfolios can be highly leveraged. 

But we know that investors are willing to sacrifice some expected 
return in order to reduce leverage risk, just as they sacrifice 
some expected return in order to reduce volatility risk. Investors 
seeking to control portfolio leverage often choose a desired 
level of leverage based on the volatility of the securities, then 
impose that level by incorporating a leverage constraint in an 
MV optimization. As we have seen, however, MV optimization 
with leverage constraints will lead to the optimal portfolio for a 
leverage-averse investor only by chance.
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Low Long-only index fund Enron employee’s 
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Figure 13: Volatility and leverage polar cases
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The MVL model explicitly considers investor leverage tolerance 
as well as investor volatility tolerance. It thus allows the investor 
to determine, for any combination of leverage tolerance and 
volatility tolerance, the optimal portfolio. MVL optimization shows 
that an investor’s level of leverage tolerance can have a large 
effect on portfolio choice.

Incorporating leverage aversion into portfolio optimization will 
result in less-leveraged portfolios than those produced with 
conventional MV optimization. This will be beneficial for leverage-
averse investors because their portfolios will better reflect their 
preferences. A lower level of leverage in the financial system may 
also reduce the systemic risk that has repeatedly roiled the global 
economy.
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