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On the Optimality of Long–Short Strategies
Bruce I. Jacobs, Kenneth N. Levy, and David Starer

We consider the optimality of portfolios not subject to short-selling
constraints and derive conditions that a universe of securities must satisfy
for an optimal active portfolio to be dollar neutral or beta neutral. We find
that following the common practice of constraining long–short portfolios
to have zero net holdings or zero betas is generally suboptimal. Only under
specific unlikely conditions will such constrained portfolios optimize an
investor’s utility function. We also derive precise formulas for optimally
equitizing an active long–short portfolio using exposure to a benchmark
security. The relative sizes of the active and benchmark exposures depend
on the investor’s desired residual risk relative to the residual risk of a typical
portfolio and on the expected risk-adjusted excess return of a minimum-
variance active portfolio. We demonstrate that optimal portfolios demand
the use of integrated optimizations.

he construction and management of
long–short portfolios are complicated
tasks involving assumptions and actions
that may seem counterintuitive to the

investor unfamiliar with shorting. Despite
attempts by Jacobs and Levy (1996b, 1997) to clarify
the issues, many practitioners—even some of the
most experienced—have been beguiled by an
assemblage of myths and misconceptions. With
long–short strategy becoming an increasingly
important component of institutional portfolios,1

some of the more egregious misunderstandings
must be purged from the collective psyche of the
investment community.

One myth that many practitioners evidently
believe (see, for example, Michaud 1993 and Arnott
and Leinweber 1994) is that an optimal long–short
portfolio can be constructed by blending a short-
only portfolio with an independently generated
long-only portfolio.2 Adherents to this belief tend
to characterize the overall portfolio in terms of the
excess returns of, and correlation between, the two
constituent portfolios. One of the reasons such an
approach is suboptimal (see Jacobs and Levy 1995)
is that it fails to use the correlations between the
individual (long and short) securities to achieve an
overall reduction in variance.

Another myth is that a long–short portfolio rep-

resents a separate asset class. This misconception is
common. For example, Brush (1997) described a
technique for optimally blending a long–short port-
folio with a long-only portfolio to achieve an overall
portfolio that has a greater Sharpe ratio than either
of its constituent portfolios. In so doing, Brush
implicitly assigned long–short and long-only port-
folios to different asset classes. Although this blend-
ing approach appears to acknowledge the benefits
of long–short investment, it misses the points that a
long–short portfolio does not belong to a separate
asset class and that combining a long–short portfolio
with a long-only portfolio produces (in the aggre-
gate) only a single portfolio! The optimal weights of
that single portfolio should be obtained from an inte-
grated optimization. The important question is not
how one should allocate capital between a long-only
portfolio and a long–short portfolio but, rather, how
one should blend active positions (long and short)
with a benchmark security in an integrated optimi-
zation.

In addition to falling victim to such myths,
some practitioners have followed common prac-
tices that may not be optimal. For example, they
often seek to constrain their portfolios to be neutral
with respect to some factor (that is, to be indepen-
dent of, or insensitive to, that factor).3 In particular,
they often constrain their portfolios to be dollar
neutral by committing the same amount of capital
to their long holdings as they commit to their short
holdings. In so doing, in a naive sense, they set their
net market exposure to zero. Another constraint
often imposed is that of beta neutrality, in which
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the manager constrains the portfolio to have a beta
of zero. Such a beta-neutral portfolio is theoreti-
cally insensitive to market movements.

The manager may apply neutrality constraints
voluntarily or because the client requires them. But
although valid taxation, accounting, or behavioral
reasons may exist for imposing such constraints,
there are generally no pressing financial reasons for
doing so.4 On the contrary, imposing them may
actually prevent managers from fully using their
insights to produce optimal portfolios. A general
principle of optimization is that constrained solu-
tions do not offer the same level of utility as uncon-
strained solutions unless, by some fortunate
coincidence, the optimum lies within the feasible
region dictated by the constraints. Given that neu-
trality is often imposed, we consider here the con-
ditions under which this coincidence can occur.
That is, we set out to find the conditions under
which dollar-neutral or beta-neutral portfolios are
optimal.

When Treynor and Black (1973) discussed sim-
ilar issues in a classic paper, they posed the follow-
ing question: “Where practical is it desirable to so
balance a portfolio between long positions in secu-
rities considered underpriced and short positions
in securities considered overpriced that market risk
is completely eliminated?” (p. 66). This article tack-
les Treynor and Black’s question and extends the
analysis to the following:
1. Under what conditions will a net holding of

zero (i.e., dollar neutrality) be optimal for a
long–short portfolio?

2. Under what conditions will the combined opti-
mal holdings in a long–short portfolio be beta
neutral?

3. How should one optimally equitize a long–
short portfolio? In particular, under what con-
ditions will dollar neutrality or beta neutrality
be optimal for the active portion of an equi-
tized long–short portfolio? 
This article is essentially divided into two parts.

The first part considers an active portfolio (which we
define as one that has no explicit benchmark hold-
ing), and the second part considers an equitized
active portfolio (which we define as one that consists
of the active portfolio combined with an explicit
exposure to the benchmark security). The first part
is concerned mainly with risk and return in an abso-
lute sense, and the second part is concerned mainly
with risk and return in a relative sense.

Within this framework, we first consider the
optimality of dollar and beta neutrality in active
long–short portfolios. We then reconsider dollar
neutrality and beta neutrality in portfolios
designed to minimize residual risk and in portfo-

lios designed to maximize return subject to a con-
straint on residual risk. Finally, we extend the
analysis to consider equitized portfolios. We exam-
ine the optimality of dollar neutrality and beta
neutrality for the active portion of an equitized
long–short portfolio, and we show how optimal
exposure to the benchmark security should be com-
puted.

Portfolio Construction and
Problem Formulation
In answering the first two questions posed in the
introduction, we assume that the investor has
solved the usual expected utility maximization
problem and that the solution permits shorting. We
determine what properties the universe of invest-
ment opportunities should possess for the portfolio
resulting from the maximization problem to be dol-
lar neutral or beta neutral. To answer the third
question, we set up an integrated criterion function
and examine its properties.

We will be concerned mainly with variations
of the utility function favored by Markowitz (1952)
and Sharpe (1991):

(1)

where rP is the expected return on the investor’s
portfolio,  is the variance of the return, and  is
the investor’s risk tolerance. For mathematical con-
venience, we have included a factor of one-half in
the utility function. This utility function can be
considered an approximation to the investor’s
expected utility in the sense of von Neumann and
Morgenstern (1944). As Sharpe (1991) pointed out,
if the investor has a negative exponential utility
function over wealth and if returns are jointly nor-
mally distributed, then the approximation will be
exact. Moreover, Levy and Markowitz (1979)
showed that the approximation is good even if the
investor has a more general utility function or if
returns are not jointly normally distributed or both.

Assume that, in seeking to maximize the utility
function in Equation 1, the investor has an available
capital of K dollars and has acquired ni shares of
security i  {1, 2, . . . , N}. A long holding is repre-
sented by a positive number of shares, and a short
holding is represented by a negative number.5 The
holding hi in security i is the ratio of the amount
invested in that security to the investor’s total cap-
ital. Thus, if security i has price pi, then hi = nipi/K.

In addition to the N securities, assume also that
the investor may have an exposure of KB dollars to
a benchmark security. We are intentionally vague
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about the nature of the benchmark security to
emphasize that long–short portfolios are neutral
and can be transported to any asset class by use of
appropriate overlays. Thus, the benchmark security
may be an equity index, a debt index, or any other
instrument that the investor cares to specify. The
holding of the benchmark security is hB = KB/K.6

The investor seeks to maximize the utility function
given in Equation 1 by choosing appropriate values
for security holdings hi.

Unlike the typical optimization problem for a
fully invested portfolio, our utility function is not
augmented with a constraint to ensure that the total
holdings sum to unity. Instead, the long–short port-
folio is constrained only by U.S. Federal Reserve
Board Regulation T, which states that the total
value of the investment should not exceed twice the
investor’s capital.7 To express this constraint math-
ematically, we define a long set, L, and a short set,
S, such that 

L = {i: ni > 0} and S = {i: ni < 0}.

Regulation T states that each investor must satisfy
the following inequality:

This inequality need not be included explicitly in
the optimization because the relative sizes of hold-
ings are unaffected by it and all holdings can simply
be scaled up or down so that it is satisfied.

Optimal Long–Short Portfolios
As discussed, many long–short investment
approaches create suboptimal portfolios because
they prepartition the problem. That is, they com-
bine a long portfolio with an independently gen-
erated short portfolio, and they characterize the
long–short portfolio in terms of the correlation
between the two constituent portfolios. In con-
trast, our approach treats the portfolio as a single
entity. Unlike Michaud and Arnott and Leinweber,
we exploit the correlations between all of the indi-
vidual securities (whether they are held long or
sold short) in a single integrated optimization.

Consider first portfolios that have no explicit
position in the benchmark security. Let ri be the
expected return on security i. Using matrix nota-
tion, the absolute return on the active portfolio is
then

rP = hTr, (2)

where h = [h1, h2, . . . , hN]T is a vector of holdings,
r = [r1, r2, . . . , rN]T is a vector of returns, and the
superscript T denotes matrix or vector transposi-
tion. 

In this analysis, we ignore risk-free holdings.
If we were to consider them, however, they would
simply result in the addition of the term hFrF to the
expression for the portfolio return.

The variance of the portfolio’s absolute return
is

(3)

where Q = cov(r, rT) is the covariance matrix of the
individual securities and is assumed to be known.

Substituting Equation 2 for the portfolio return
and Equation 3 for the variance into the utility
function (Equation 1), differentiating the utility
with respect to holding vector h (see, for example,
Magnus and Neudecker 1988), setting this deriva-
tive equal to zero, and solving for h produces the
optimal weight vector

h = Q–1r. (4)

This form is typical for the expression for an opti-
mal portfolio, and it shows that the best mix of risky
assets in an investor’s portfolio depends only on
the expected returns and their covariances. The
investor’s wealth and preferences affect only his or
her demand for risky assets through a scalar  that
is the same for all risky assets.

As with the portfolio given by Equation 4,
optimal security weights in many portfolio prob-
lems turn out to be proportional to the securities’
expected returns and inversely proportional to the
covariance of the returns. In addition to maximiz-
ing the utility function of Equation 1, appropriately
scaled versions of Equation 4 also give the optimal
portfolio weights for such problems as maximizing
the Sharpe ratio (Sharpe 1994), minimizing portfo-
lio variance while holding portfolio expected
return fixed (Treynor and Black), and maximizing
expected return subject to a constraint on variance.

We will find it useful to define the portfolio of
Equation 4 with  = 1 as the unit-risk-tolerance
active (URA) portfolio, . That is,

The expected absolute return of this portfolio is

and the variance of this portfolio’s absolute return
is 

 

Optimality of Dollar Neutrality. C o n s i d e r
now the conditions under which a portfolio would
be dollar neutral. The net holding H is the sum of
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all the individual holdings,

(5)

where 1N represents an N × 1 vector of ones. Sub-
stituting Equation 4 into Equation 5 leads to the
following expression for the net holding:

(6)

For the portfolio to be dollar neutral, the value
of the long holdings must equal the negative of the
value of the short holdings. By using the definitions
of the long and short sets, this equality is expressed
mathematically as

Equivalently, because L and S are exhaustive, the
sum of the weights must be zero and the general
condition for dollar neutrality is

H = 0. (7)

The logical argument attached to Equation 7
must be kept clearly in mind. The condition
expressed in the equation is necessary but not suf-
ficient for an optimal portfolio to be dollar neutral.
Thus, if the condition holds, the optimal portfolio
must be dollar neutral. One can, however, con-
struct a portfolio that is dollar neutral (and thus
satisfies Equation 7) but not optimal.

For the specific portfolio under consideration,
substituting Equation 6 into Equation 7 gives the
following condition for optimal dollar neutrality:

(8)

This general condition for dollar neutrality
can be simplified by making various assumptions
about the structure of covariance matrix Q. For
example, one special case arises if one subscribes
to the assumptions of the constant correlation
model of Elton, Gruber, and Padberg (1976), under
which the elements of the covariance matrix are
given by

,

where  is the standard deviation of the return of
the ith security and  is a constant correlation fac-
tor. Equivalently, in the Elton, Gruber, and Padberg
model, the covariance matrix can be written in
matrix notation as

(9)

where  is a diagonal matrix having the variances
 along its diagonal and  is a vector

of standard deviations: . The
covariance matrix as written in Equation 9 is in a
convenient form for application of the matrix inver-
sion lemma.

The matrix inversion lemma (see, for example,
Kailath 1980) states that for compatibly dimen-
sioned matrixes W, X, Y, and Z,

(10)

Using this lemma to invert the covariance matrix in
Equation 9 and substituting the result into Equa-
tion 6 for the net holding produces

(11)

One can easily verify the following identities:

Thus, Equation 11 reduces to

(12)

where

 

Intuition concerning Equation 12 can be
obtained by defining a measure of return stability,

, as the inverse of the standard deviation of the
return of security i. Then, for portfolios with many
securities (i.e., those with large N), the constant a is
approximately equal to the average return stability.
That is,
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Using this approximation in Equation 12 makes the
net holding 

(13)

Thus, if the net risk-adjusted return of all securities
weighted by the deviation of their stability from
average is positive, the net holding should be long.
Conversely, if this quantity is negative, the net hold-
ing should be short. Only under the special condi-
tion in which H in Equation 12 is equal to zero will
the optimal portfolio be dollar neutral. Constraining
the holding to be zero when this condition is not
satisfied will produce a suboptimal portfolio.8

Equation 13 formalizes the simple intuitive
notion that you should be net long if you expect the
market as a whole to go up and net short if you
expect it to go down! Importantly, however, it tells
you how long or how short your net exposure
should be based on your risk tolerance, your pre-
dictions of security returns and standard devia-
tions, and your estimate of the correlation between
security returns.

Equation 13 and the requirement that H = 0 can
also be used in a normative sense. For example,
because Equation 13 is independent of the individ-
ual holdings, an investor could select a universe of
securities such that, based only on their expected
risk-adjusted returns and return stability, the net
holding of the universe as computed with Equation
13 is zero. The investor could then be confident that
the portfolio formed from this universe that maxi-
mizes the utility function (Equation 1) will be dollar
neutral.

More precise conditions that an optimal port-
folio must satisfy to be dollar neutral can be
obtained by making further assumptions about
Equation 12. For example, assuming that  and

 gives

(14)

A sufficient (but not necessary) condition for Equa-
tion 14 to hold is that both sums in the equation be
zero simultaneously. Each of these sums can be
regarded as a form of net risk-adjusted return that,
if equal to zero, results in zero net holding being
optimal. Alternatively, in the (admittedly unlikely)
circumstance that all variances are equal, Equation
14 for optimal dollar neutrality is satisfied if the
sum of the returns is zero. Roughly, in this case, the
portfolio should have zero net holding if the aver-
age return is zero.

Optimality of Beta Neutrality. In an exactly
analogous manner to the preceding analysis, we
consider in this section the conditions under which
an unconstrained portfolio would optimally have
a beta of zero. Because we are dealing here with
beta sensitivity, it is appropriate to use Sharpe’s
diagonal model, which gives the expected return of
the ith security, ri, in terms of the alpha of that
security, , and beta of that security, , and the
expected return of the benchmark security, rB:

When this model is used, the beta of the portfolio is

(15)

where . The covariance matrix
of the security returns is

where  is a diagonal matrix whose ith diagonal
entry is  , and . The
diagonal form of this matrix is consistent with the
model’s assumption that the correlation between
any pair of stock return residuals is zero. Using
the matrix inversion lemma (Equation 10), the
inverse of the covariance matrix is

(16)

Using Equation 4 in Equation 15 and setting
the portfolio beta equal to zero gives the following
general condition for optimality of beta neutrality:

(17)

Then, if Equation 16 is used, the condition shown
in Equation 17 becomes

(18)

The two conditions under which Equation 18 is
satisfied are the following: Either

which would require , and is thus untena-
ble, or

This second condition, rewritten as a summation,
implies that the condition under which an optimal
portfolio has zero beta is
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(19)

The left-hand side of Equation 19 can be interpreted
as a beta-weighted, risk-adjusted net return. If this
quantity is positive, then the optimal portfolio will
have a positive beta. Conversely, if this quantity is
negative, the optimal portfolio will have a negative
beta. Constraining the portfolio beta to be zero
when Equation 19 is not satisfied will result in
suboptimal portfolio construction.

If one uses the Elton, Gruber, and Padberg
approximation for the covariance matrix, one can
show that an alternative condition for beta neutral-
ity to be optimal is

where beta is a volatility-weighted average beta,

This expression is analogous to Equation 13 and
shows that the portfolio beta is optimally zero
when the net risk-adjusted return of all securities
weighted by the deviation of their betas from the
average is zero. 

We have dealt thus far only with absolute return
and absolute variance. Most plan sponsors and
investment managers, however, are concerned with
relative measures rather than absolute measures. In
particular, they are interested in maximizing return
in excess of a benchmark return while simulta-
neously minimizing residual risk. In the next sec-
tion, we extend the previous results to portfolios
formed by optimizing such relative measures.

Optimal Long–Short Portfolio with Minimum
Residual Risk. The excess return of a portfolio, rE,
is simply rA – rB, the portfolio’s absolute return
minus the benchmark return.9 The residual risk is
the variance of the excess return, and can be shown
to be 

where q = cov(r, rB) is a column vector of covariances
between the individual security returns and the
benchmark return. The active portfolio that mini-
mizes the residual risk can be shown to be h = Q–1q.
Defining this portfolio as the minimum-residual-
risk (MRR) portfolio, , will be useful; that is,  

This portfolio’s absolute return is

 

and its residual risk, the minimum attainable with
an unequitized portfolio, is

Using the same type of analysis as in the pre-
vious section, we can state the condition for such a
portfolio to be dollar neutral optimally as

or

Thus, the minimum-residual-risk (or minimum-
tracking-error) portfolio will optimally be dollar
neutral if the net risk-adjusted covariance of the
securities’ returns with the benchmark return,
weighted by the deviations of the returns’ stability
from the average, is zero.

To find the condition for the optimality of beta
neutrality, observe that

so

and the beta of the portfolio is

Because Q is positive definite, so too is Q–1. Thus,
 cannot be zero for any nonzero .

For the specific case using the Sharpe diagonal
model, the preceding expressions can be used to
find that the condition for a minimum-excess-
variance portfolio to be optimally beta neutral is

but this equation cannot be satisfied by any portfolio
that contains even one security with a nonzero beta.
Thus, we reach the conclusion that no practical active
portfolio that minimizes residual risk can optimally
be beta neutral. This conclusion accords with intu-
ition: A portfolio that minimizes residual risk should
have a beta that approaches one, not zero.
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Optimal Long–Short Portfolio with Specified
Residual Risk. Typically, a plan sponsor gives a
manager a mandate to maximize return on a port-
folio and simultaneously demands that the stan-
dard deviation or variance of that return equal
some specified level.10 For the manager, this task
amounts to choosing, at each investment period, a
portfolio that optimizes the Lagrangian

where  is the desired excess variance (i.e., resid-
ual risk) and  is a Lagrange multiplier.

Although this approach differs slightly from
the more traditional approach of Black (1972),
which seeks to minimize variance subject to a con-
straint on excess return, we believe that the prob-
lem posed as return maximization subject to a
constrained risk level is a more accurate reflection
of the thought processes of plan sponsors and
investment managers.

The portfolio that optimizes this Lagrangian
can be shown to be

where  is the unit-risk-tolerance active (URA) port-
folio,  is the minimum-residual-risk (MRR) portfo-
lio, and

The optimal portfolio in this case is the sum of
the MRR portfolio and a scaled version of the URA
portfolio. The scaling factor depends on the
desired residual risk, the minimum attainable
residual risk, and the variance of the URA portfo-
lio. If the desired residual risk is less than the
minimum attainable residual risk, then

 and no portfolio can be constructed.
If the desired residual risk is equal to the minimum
attainable residual risk, then   and
the optimal portfolio will be simply , the
minimum-residual-risk portfolio. As the desired
residual risk increases, the portfolio becomes more
like a scaled version of  (the URA portfolio) and
k tends asymptotically to the investor’s risk toler-
ance, .

The condition under which this portfolio is
optimally dollar neutral again has the familiar form

(20)

or

indicating that this portfolio is optimally dollar
neutral if a net risk-adjusted linear combination of
the securities’ returns and covariances, weighted
by deviation of return stability from average, is
zero. The interpretation of Equation 20 is similar to
that of Equation 13, where the term kri + qi now
replaces ri and the presence of k and qi reflects the
investor’s concerns about residual risk.

Similarly, the condition under which this port-
folio will optimally be beta neutral is

equivalently, because  and 

Optimal Equitized Long–Short 
Portfolio
We now address the third question posed in the
introduction, namely: How should one optimally
equitize a long–short portfolio? In this case, in addi-
tion to the long–short portfolio, the manager has an
explicit benchmark exposure, either through own-
ership of a physical benchmark security or through
a derivative overlay. We determine the optimal
portfolio weights and the optimal benchmark
exposure in a single integrated step. This approach
differs from the approach used by Brush (1997), in
which security weights were predetermined for
two distinct portfolios—a long–short portfolio and
a long-only portfolio—and then capital was allo-
cated between these two existing portfolios. In
Brush, the long-only portfolio served to provide
both security and benchmark exposure whereas the
long–short portfolio provided security but not
benchmark exposure.

Treynor and Black showed that, under the
assumptions of the diagonal model, an equitized
long–short portfolio can be viewed conceptually as
the outcome of the following separate decisions:
selecting an active portfolio to maximize an
appraisal ratio, blending the active portfolio with a
suitable replica of the market portfolio to maximize
the Sharpe ratio, and scaling the positions in the
combined portfolio through lending or borrowing
while preserving their proportions. These separate
decisions are of a different nature from those of
Brush. Treynor and Black arrived at the conceptual
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separability only after performing an explicit inte-
grated optimization in which security positions
(long and short) and benchmark exposure were
determined jointly.

Treynor and Black showed, among other
things, that a security may play two roles simulta-
neously: (1) a position based entirely on the secu-
rity’s expected independent return (appraisal
premium) and (2) a position based solely on the
security’s role as part of the market portfolio. These
two roles must be considered when blending indi-
vidual security positions with a benchmark expo-
sure. In this section, we derive expressions for the
optimal benchmark holding that implicitly account
for this dual nature of securities.

The absolute return on the equitized portfolio
now includes a contribution from the return on the
benchmark security and is, therefore, given by

rP = hTr + hBrB.

The excess return on the equitized portfolio is

rE = hTr + hBrB – rB = hTr,

where the augmented holding vector, h, and the
augmented return vector, r, for the equitized port-
folio are defined as

with . Note that the augmented vectors
(which are distinguished from the active portfolio
vectors by the use of bold font) incorporate the
corresponding active portfolio holding and return
vectors.

The variance of the excess return of the equi-
tized portfolio, , is

where Q is the covariance matrix of the augmented
return vector r.11 Noting that r is a partitioned
vector, we can also write Q in the following parti-
tioned form:

Optimality of Dollar Neutrality with Equitiza-
tion. In this section, we consider the active portion
of the equitized long–short portfolio and determine
the conditions under which that portion is optimally
dollar neutral. As before, we consider an uncon-
strained portfolio designed to maximize the inves-
tor’s utility. In the presence of equitization, the
utility of interest is the portfolio’s excess return tem-

pered by the variance of its excess return. Specifi-
cally, the objective function to be maximized is

where, as before,  is the risk tolerance of the inves-
tor.

By differentiating this objective function with
respect to h and setting the derivative equal to zero,
the benchmark and active portfolio weights are
found to be

and

  

The scalar m is given by

The net holding in the active part of the portfolio is
obtained by summing the components of h to give

H = 1Th 

    = 1TQ–1(r + mq). 

This quantity will be zero if dollar neutrality is
optimal.

Using the constant correlation model dis-
cussed previously to provide more specific results
for the inverse covariance matrix, we find the net
holding to be

This holding is exactly analogous to the holdings
given in Equations 13 and 20. As in those equations,
the net holding will be zero when the weighted
average of a particular set of risk-adjusted returns
is zero. As before, the weighting is the deviation of
the stability of each security’s return from the aver-
age stability. In this case, however, the particular
risk-adjusted return includes one part equal to the
security’s return and a second part equal to a scaled
version of the security’s correlation with the bench-
mark security. The scaling, m, depends on the
return and variance of the minimum-residual-risk
portfolio relative to the return and variance of the
benchmark security.

Optimality of Beta Neutrality with Equitiza-
tion. Following the method discussed in the section
on beta neutrality, and using the expressions
derived previously, we find that the condition for
the active portion of an equitized long–short port-
folio to be optimally beta neutral is
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Equivalently, because  and ,
the condition for the active portion of an equitized
long–short portfolio to be optimally beta neutral is

Optimal Equitized Long–Short Portfolio with
Specified Residual Risk. For this problem, we
define an optimal portfolio to be one that maxi-
mizes expected excess return while keeping the
variance of the excess return (i.e., the residual risk)
equal to some specified or desired level. To find the
portfolio, we form the following Lagrangian:

Differentiating the Lagrangian with respect to h
and  and setting these derivatives equal to zero
yields

(21)

and

(22)

Solving Equation 21 for h, substituting this solution
into Equation 22, and noting that Q is Hermitian,12

we arrive at the following solution for the optimal
equitized portfolio: 

(23)

where

(24)

Although Equation 23 enables one to compute the
optimal holdings, it does not provide much intu-
ition about the benchmark holding.

We now derive an explicit expression for the
optimal benchmark exposure from which we can
draw insight. First, use the definitions of r, h, and
Q to rewrite Equation 21 as the following set of
equations:

(25)

and

(26)

Then, solving for h from Equation 25, substituting
this solution into Equation 26, and rearranging
gives the optimal benchmark holding as

(27)

To attach intuition to Equation 27, it is conve-
nient to state a number of definitions and associa-
tions. Define  to be the unit-risk-tolerance equitized
(URE) portfolio that optimizes the unconstrained
mean–variance criterion function .
This portfolio is

 

Its expected excess return and the variance of that
return are 

(28)

This variance is the term under the radical in the
denominator of Equation 27. 

Using the definitions of , and rMRR
in Equation 27 gives the following equation:

(29)

from which we can make the following qualitative
inferences:
• The quantity in parentheses can be regarded as

the risk-adjusted excess return of the minimum-
residual-risk portfolio, and the benchmark
holding should clearly decrease as this quantity
increases. The following specific comments
apply:
1. Generally, rMRR > rB, so the expression in

parentheses in Equation 29 is positive. 
2. As the return of the minimum-residual-

risk portfolio, rMRR, increases or the return
of the benchmark security, rB, decreases,
the holding in the benchmark security
should decrease.

3. As the minimum residual risk, ,
increases, the holding of the benchmark
should increase.

• The weight in the benchmark security is gener-
ally negatively related to the desired residual
risk; that is, as the desired residual risk, ,
increases, the holding in the benchmark should
decrease. If no excess variance can be tolerated,
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 and , so the portfolio should be
fully invested in the benchmark. If the investor
desires a large residual risk in pursuit of high
returns, the benchmark portfolio weight can
decrease to less than zero and the investor
should sell the benchmark security short.

• The ratio  is an important determinant
of the relative size of the benchmark holding.
It is the ratio of the investor’s desired residual
risk to the residual risk of a portfolio that a unit-
risk-tolerant investor would choose. As the
ratio increases, the optimal benchmark holding
generally decreases.
Regarding the active portfolio, h, note that the

preceding definitions substituted into Equation 25
lead to

As before, the optimal active holding is a function
of the unit-risk-tolerance active portfolio and the
minimum-residual-risk portfolio. As 
approaches zero, the optimal holdings in the active
portfolio tend to zero. As before, with a require-
ment for zero excess variance, the optimal holding
is a full exposure to the benchmark.

Optimal Equitized Long–Short Portfolio with
Constrained Beta. In addition to being required to
produce portfolios that maximize return while
keeping residual risk at a prescribed level, manag-
ers are typically expected to keep the betas of their
portfolios very close to one. If a portfolio beta dif-
fers significantly from one, the manager may be
viewed as taking undue risk or attempting to time
the market.

These requirements are captured in the follow-
ing Lagrangian:

where the s are Lagrange multipliers and  is the
desired portfolio beta (usually equal to one). This
Lagrangian can be optimized with respect to the
unknown parameters, but the resulting solution is
algebraically untidy and does not provide much
insight. Instead, an intuitive result can be achieved
by examining the constraint on the portfolio’s beta.
Specifically, the beta of the portfolio is

and substituting this expression into the constraint
on the portfolio beta gives

(30)

where  is the beta of the active portfolio.
An intuitive explanation of Equation 30 is that

with a constraint on the portfolio’s beta, the bench-
mark holding is simply the difference between the
desired beta and the beta of the active portfolio.
One extreme case corresponds to a desired portfo-
lio beta of one and an active portfolio beta of zero;
under these conditions, the benchmark holding
must be one. That is, the manager should be
exposed to the benchmark to the full value of the
capital under management.

Conclusion
We derived conditions that a universe of securities
must satisfy for an optimal portfolio constructed
from that universe to be dollar neutral or beta neu-
tral. Using criterion functions that are most often
used in practical investment management, we
found conditions under which optimal portfolios
become dollar or beta neutral. Only in fairly restric-
tive cases will optimal portfolios satisfy these con-
ditions. Generally, an optimal long–short portfolio
will be dollar neutral if the risk-adjusted returns of
its constituent securities, weighted by the deviation
of those securities’ returns from average, sum to
zero. This condition can be used to select a universe
of securities that will naturally form a dollar-
neutral optimal portfolio. Analogous conditions
must hold for a long–short portfolio to be beta
neutral.

We next considered optimal equitized portfo-
lios and derived conditions under which the active
portion of such portfolios will be dollar neutral or
beta neutral. We derived an expression for the hold-
ing of a benchmark security that sets the residual risk
of an equitized long–short portfolio equal to a
desired value while simultaneously maximizing the
portfolio’s return. We showed that the optimal hold-
ing of the benchmark security depends on such
parameters as the ratio of the desired residual risk
level to the residual risk level of a portfolio that a
unit-risk-tolerant investor would choose and the
risk-adjusted excess return of the minimum-vari-
ance active portfolio over the benchmark return. The
benchmark holding should decrease in the follow-
ing circumstances: when the investor’s appetite for
residual risk increases, when the expected return of
the minimum-variance active portfolio increases,
when the variance of the minimum-variance active
portfolio decreases, or when the expected return of
the benchmark portfolio decreases. The portfolio
should be fully equitized when the investor has no
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appetite for residual risk or when the active portfolio
has a zero beta and the equitized portfolio is to be
constrained to have a beta of one.

Optimal portfolios demand the use of inte-
grated optimization. In the case of active long–

short portfolios, the optimization must consider all
individual securities (both long and short) simulta-
neously, and in the case of equitized long–short
portfolios, this consideration must also encompass
the benchmark security.

Notes
1. Recent tax rulings have made long–short investing more

attractive to certain classes of investors than in the past.  For
example, borrowing cash to purchase stock (i.e., debt financ-
ing through margin purchases) can give rise to a tax liability
for tax-exempt investors. However, according to a January
1995 Internal Revenue Service ruling (IRS Ruling 95-8),
borrowing stocks to initiate short sales does not constitute
debt financing, so profits realized when short sales are
closed out are not considered unrelated business taxable
income (UBTI). Furthermore, the August 1997 rescission of
the “short-short” rule has enabled mutual funds to imple-
ment long–short investing. Under IRS Code sec. 851(b)(3),
the short-short rule had required that in order to qualify for
tax pass-throughs, a mutual fund must have derived less
than 30 percent of its gross income from positions held less
than three months. This rule severely restricted funds’ abil-
ity to sell short, because profits from closing short positions
were considered to be short-term gains and thus included
in this provision.

2. The practice of blending separate long and short portfolios
may have arisen from investors with traditional long-only
managers adding a dedicated short seller either to neutral-
ize market risk or to enhance overall portfolio return.

3. Portfolios can be constrained to be neutral with respect to
any particular factor, such as interest rates. Furthermore,
portfolios can be constrained to be insensitive to several
factors simultaneously. We focus on dollar neutrality and
beta neutrality because they appear to be of greatest interest
to investors. Application of our results to other cases is
straightforward.

4. As discussed in Note 1, from a taxation perspective, interest
indebtedness generates UBTI for tax-exempt investors. For
instance, a 200 percent long position would give rise to
margin debt in the amount of 100 percent of capital, which
would generate UBTI.  But investing capital both 100 percent
long and 100 percent short incurs no interest indebtedness
while providing the maximum amount of leverage under
U.S. Federal Reserve Board Regulation T. From an account-
ing perspective, balanced long and short positions can easily
be monitored. Because true parameter values are unknown
and can be estimated only with uncertainty, market neutral-
ity is problematic. Thus, investors may be more comfortable
with the accounting certainty of dollar balance. From a
behavioral and “mental accounting” perspective, investors
can easily categorize all beta-neutral long–short portfolios as
market neutral and may prefer knowing that certain “pock-
ets” of assets are neutralized from market movements—
especially when the investor wants to separate the security
selection decision and the derivative overlay decision.

5. As described by Sharpe (1991), “A ‘short position’ is
achieved by borrowing an asset such as a share of stock,
with a promise to repay in kind, typically on demand. The
borrowed asset is then sold, generating a cash receipt. If the
proceeds of the sale may be used for other types of invest-
ment, the overall effect is equivalent to a negative holding
of [the borrowed asset]” (p. 500).

6. In general, we use lower-case subscripts to refer to a generic
security and upper-case subscripts to refer to particular
entities. Thus, for example, the subscript i  indicates that the
variable under consideration is an unspecified security i.
The subscript B refers to a particular chosen benchmark,
and P refers to the particular portfolio.

7. Regulation T represents an institutional friction. In this
analysis, it conveniently drops out of the specification of the
problem, and the analysis continues to be consistent with
the assumption in Note 5. For a review of the institutional
aspects of the market, see Jacobs and Levy (1997).

8. It can be shown that the proportional change in utility when
the portfolio is constrained to be dollar neutral is U/U =
–(1TQ–1r)2/[(1TQ–11)(rTQ–1r)]. This change has a maximum
value of zero (which occurs when the condition for dollar
neutrality is satisfied) and is otherwise always negative.

9. Strictly, the excess return is rE = [(1 + rA)/(1 + rB)] – 1, but
the two measures of excess return are similar for small
constituent returns and the expression used in the text is
more convenient arithmetically.

10. Sponsors are often content with a specification of residual
risk and are concerned with risk taking that exceeds the
specified level or with closet indexing, where risk is below
the intended level. Jacobs and Levy (1996a) showed that
enhanced passive searches that consider exclusively man-
agers having risk of a certain level or less are suboptimal.

11. Our approach is valid for the usual case in which the
benchmark return cannot be expressed as a linear combina-
tion of the returns of the individual securities in the portfo-
lio. If the benchmark return can be expressed in such a way
(for example, if the portfolio consists of every single one of
the securities used to construct the benchmark), then the
augmented covariance matrix is singular and an analogous
but slightly different approach must be taken to find the
optimal portfolio.

12. A Hermitian matrix is one that is equal to its transpose (or
conjugate transpose if it is complex). Because Q is Hermi-
tian, (Q–1)TQ  is equal to the identity matrix and cancels out
during derivation of Equation 24.

∆
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