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Simulating Security Markets in 
Dynamic and Equilibrium Modes

Bruce I. Jacobs, Kenneth N. Levy, CFA, and Harry M. Markowitz

An asynchronous discrete-time model run in “dynamic mode” can model the effects on market
prices of changes in strategies, leverage, and regulations, or the effects of different return estimation
procedures and different trading rules. Run in “equilibrium mode,” it can be used to arrive at
equilibrium expected returns.

nalysts in the natural sciences, manufactur-
ing, logistics, and warfare frequently rely
on asynchronous discrete-time models.
Such models are less well known in finance,

where analysts have tended to rely on continuous-
time models.1 But in finance, as in these other areas,
discrete-time models offer several important advan-
tages over continuous-time models.

Both continuous-time and discrete-time mod-
els are a form of dynamic model. Dynamic models
allow one to represent the evolution of a system,
such as a financial market, over time. In continuous-
time dynamic models, the system changes continu-
ously over time; in discrete-time dynamic models,
an internal system clock advances in discrete incre-
ments. Discrete-time models can be further classi-
fied into synchronous and asynchronous models.
Synchronous discrete-time models use system
clocks that advance by fixed increments, such as a
day or a year, with the status of the system updated
at each increment. Asynchronous discrete-time
models use system clocks that advance from one
event to the next, whereby the time intervals
between events are typically not constant. Asyn-
chronous models can provide a more realistic rep-
resentation of markets than synchronous models.2

The most commonly used dynamic models in
finance assume that security prices follow a
continuous-time process. This process is frequently
assumed to be random and is modeled as a Brown-
ian motion or as a function of a Brownian motion.
A major advantage of continuous-time models is
that some of them can be solved explicitly, which

allows one to evaluate investment strategies
analytically. Most familiar, perhaps, are option-
pricing models that can be solved given a fixed-
price process for the underlying security.

Most discrete-time models cannot be solved
analytically; large and detailed asynchronous mod-
els that attempt to model complex systems require
computer simulation. Asynchronous discrete-time
models, however, can provide insights not available
from purely analytical procedures. They can be used
to examine the mechanisms behind price move-
ments and can thus be used to test the effects on
security prices of such real-world events as changes
in investors’ strategies, modifications in overall
leverage, and switches in regulatory regimes.

Consider how continuous-time and discrete-
time models deal with so-called liquidity black
holes. On Black Monday, 19 October 1987, liquidity
disappeared from the market as large numbers of
investors all attempted to sell at the same time.
Similar black holes developed in connection with
the collapse of the hedge fund Long-Term Capital
Management in 1998 and, more recently, during
the 2008–09 credit crisis (see, e.g., Jacobs 1999, 2004,
2009). In these and other, less extreme cases, the
price process was not fixed. Continuous-time mod-
eling that assumes the contrary may provide mis-
leading results.

Discrete-time models are better suited than
continuous-time models to deal with changes in
underlying parameters. For example, Kim and
Markowitz (1989) presented an asynchronous
discrete-time simulation in which investors are
assumed to be either rebalancers or portfolio insur-
ers. The former tend to sell as market prices rise and
buy as market prices fall, whereas the latter buy as
prices rise and sell as prices fall. Kim and
Markowitz showed that the behavior of the market
changes radically as the proportions of the two
kinds of investors vary.

Bruce I. Jacobs and Kenneth N. Levy, CFA, are princi-
pals at Jacobs Levy Equity Management, Florham Park,
New Jersey. Harry M. Markowitz is president of Harry
Markowitz Company, San Diego.
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In the five years leading up to the 1987 market
crash, more and more investors became portfolio
insurers. Perhaps a model that was able to incorpo-
rate the actual strategies of market participants
would have been able to anticipate that the trend-
exacerbating activities of these portfolio insurers
would lead to a market crash.

More generally, in order to make meaningful
statements about anticipated market activities, one
needs a model that can represent the strategies of
different kinds of participants, as well as changes
in the composition of those participants. Asynchro-
nous simulation is well suited to this purpose.

Asynchronous simulation can also be used to
test hypotheses about the current behaviors of mar-
ket participants. For example, consider the contro-
versy over whether investors are predominantly
rational beings who optimize some given utility
function or not-so-rational beings who are swayed
by fads, fashions, and other cognitive biases.
Surely, the market includes a mixture of these
investors and others with still different investment
patterns. A detailed asynchronous simulation can
tell us whether given combinations of investor
behaviors lead to price patterns that resemble
observed market behavior. A continuous-time
model that starts by assuming some random price
process cannot do this.

Finally, asynchronous models can be used to
arrive at equilibrium expected returns for a variety
of realistic financial markets without requiring the
kinds of unrealistic assumptions, such as uncon-
strained leverage, that some analytical models
require (see, e.g., Black and Litterman 1992).

Simulation Overview 
When simulating any system, one is free to choose
how the system is represented. We find it conve-
nient to use five basic types of entities to represent
a market: securities, statisticians, investors, portfo-
lio analysts, and traders.3 Our simulation deter-
mines the prices and trading volumes of securities
endogenously. Simulated statisticians provide
return estimates, variances, and covariances. Ideal
portfolio weights are determined by portfolio
analysts who use the inputs from statisticians and
investors’ risk-aversion parameters and portfolio
constraints. Prices and volume arise as traders seek
to complete the desired trades to move investors’
current portfolios toward their ideal portfolios. All
investors are mean–variance investors who seek to
maximize their utility: U = E – KV, where, for each
investor, E is the portfolio’s expected return, K is
the investor’s risk-aversion parameter, and V is
the variance of the portfolio’s return. Exhibit 1
describes the simulator’s entities and their rela-
tionships in more detail.  

Statisticians can use two types of return esti-
mation procedures: HIST and RPS_C. With HIST,
statisticians use historical security price data to
estimate returns. With RPS_C, they form return-
per-share estimates by dividing a given expected
constant dollar gain by the security’s current price.

Our asynchronous discrete-time simulator
can operate in two modes. When the objective is
to model the evolution of certain time-varying
quantities—in this case, market prices and
volumes—the simulator operates in the dynamic
analysis (DA) mode. When the objective is to use
the simulator as an iterative parameter estimator to
find the values of such parameters as equilibrium-
implied expected returns for securities—on the
basis of the composition of the market portfolio and
the preferences of market participants—the simu-
lator operates in the capital market equilibrium
(CME) mode. In the following sections, we describe
our findings in these two modes.

Dynamic Analysis
In the DA mode, we modeled the reaction of secu-
rity prices and volumes to different scenarios, envi-
ronments, and policies. In particular, we examined
how prices and volumes react to changes in (1) the
initial random seeds that determine individual
investor initial wealth and cash flows over the sim-
ulation, (2) the proportion of entities that use vari-
ous methods of estimating expected returns, and
(3) trading and anchoring rules.

Different Initial Random Seeds. For this
analysis, we used a base case with the following
parameters:
• A 4,000-day run (corresponding to 16 2/3

simulated years)
• 16 securities, each with a starting price of $200
• Four RPS_C statisticians
• Four HIST statisticians
• 4,000 investors who relied on RPS_C statisti-

cians (i.e., each RPS_C statistician provided
estimates to 1,000 investors)

• 200 investors who relied on HIST statisticians
(i.e., each HIST statistician provided estimates
to 50 investors)
Table 1 summarizes information about the

base case.4 We ran three simulations (Runs A, B,
and C) that differed only with respect to their initial
random seeds. 

Figure 1 plots the equally weighted market
indices for the three simulation runs. In each run,
the index starts at 200 (because in each run, the
initial price of each security was set at $200) and
ends between 200 and 300 after 4,000 simulated
days. In between, each index exhibits considerable
short-term noise and a few longer movements.
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In each of the three runs, the market started by
moving sharply upward and then declined. After-
ward, each of the three markets recovered and each
experienced its own particular ups and downs.
Although each of the simulated markets had its
own unique movements, just as actual markets do,
all the markets were relatively stable. As we will
show later in this section, that is not always the case.

Figure 2 shows the 90-day moving averages of
total daily volumes for Runs A, B, and C. A com-
mon complaint about many analytically tractable
market models is that they often imply little vol-

ume and sometimes none. This complaint does not
apply to our simulator, at least with respect to the
parameter settings in our examples. Throughout
the 16 2/3 years of each simulation, none of the
three runs had a 90-day moving average volume of
less than 200,000 shares a day. For the 16 securities,
this averages to at least 12,500 shares a day. This
amount seems to be a reasonable volume for a
market with 4,200 investors.

One possible concern is the apparent down-
ward slope of all three volume curves. To ascertain
whether the model gives large volumes at first and

Exhibit 1. Entities Used in the Asynchronous Discrete-Time Simulation
Securities Securities are the market’s fundamental tradable assets. Their prices and the volumes traded are determined 

endogenously by the simulation.

Statisticians Statisticians provide estimates of securities’ expected returns, variances, and covariances. The number of 
statisticians can be controlled by the user. The user can also control the method that statisticians use to form return 
estimates and the frequency and number of observations they use in making their estimates. The simulation 
provides for two methods of return estimation. In the HIST method, statisticians use historical security price data 
to form their estimates. In the RPS_C (“return per share constant”) method, statisticians estimate expected returns 
by dividing a given expected constant dollar gain by current price. Suppose, for example, that a particular security 
is expected to return $10 per share over the next year; if the price of the security is currently $200, the RPS_C 
statistician estimates expected return to be $10/$200, or 5 percent.

Investors Investors hold portfolios of securities, and all want to maximize their utility, which is defined as expected portfolio 
return minus a risk-aversion parameter times portfolio variance (subject to budget and leverage constraints). 
Individual investors with similar characteristics are grouped together into investor templates. The user can control 
the number of investor templates, the number of investors stamped from each template, how frequently the 
investors reoptimize, which portfolio analyst the investors use, which trader the investors use, the risk aversion 
of the investors, and the amount of leverage the investors can use. Investors within a particular template differ 
from one another only insofar as their wealth and cash flow are concerned. The initial wealth of each investor is 
drawn from a lognormal distribution, the mean and standard deviation of which depend only on the template to 
which the investor belongs. In addition, each investor can experience a random cash flow (deposit or withdrawal) 
at each portfolio reoptimization; the user can determine the probability of such a cash flow, as well as the 
parameters relating to the probability distribution of the size of the deposit or withdrawal.a

Portfolio analysts Portfolio analysts link statisticians and investors. Each portfolio analyst uses the expected return, variance, and 
covariance estimates created by a specific statistician and, from these estimates, produces an ideal, or target, 
portfolio for a given investor template. The user can control parameters relating to analysts, including how many 
analysts there are, which statistician each analyst uses, and such information as the maximum leverage that each 
analyst can use in creating target portfolios and whether the analyst’s investors can sell securities short.b

Traders Traders buy and sell securities for investors. Traders enter bids and offers into a central limit order book and 
attempt to move each investor’s portfolio in a straight line (in portfolio space) from its current composition to its 
target composition. For example, if the investor’s current portfolio vector is x0 and the target portfolio vector is x1, 
then traders move the portfolio along the trajectory defined by (1 − h)x0 + hx1 for 0 ≤ h ≤ 1. Traders are subject to 
controls that limit the extent of trading used to move toward an investor’s target portfolio and by trading rules 
used in setting bid and offer prices. Traders observe these rules to ensure that investors’ orders are executed in a 
timely but cost-effective manner. The rules also determine how the traders form their initial bids and offers, how 
they vary the bids and offers over time, and how they determine price limits beyond which they would not execute 
trades. One trader, known as a liquidation trader, liquidates positions when any investor’s portfolio violates 
maintenance margin requirements. This trader’s parameters can be set to be very aggressive, thus ensuring that 
all necessary trades are made, virtually irrespective of the cost. When bid and offer prices for the same security 
overlap, a trade occurs. The price at which this trade happens is regarded as the current price of the security until 
another trade occurs. Thus, prices are determined endogenously by trades.c

aEach investor starts with his or her initial wealth invested in a portfolio that contains all securities in equal weights. In practice, the
first few months of a simulation often show greater trading volume and price variability as investors move to their desired portfolios.
bFor portfolio optimization with long and short positions, see Jacobs, Levy, and Markowitz (2005, 2006).
cBecause prices—and thus returns—are determined endogenously, the return distributions need not be normal. Levy and Markowitz
(1979), however, provided motivation for using mean–variance preferences as an approximation for direct expected utility maximiza-
tion even when returns are not normal.
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then reduces to little or no volume, we continued
several runs for much longer periods and found that
the model maintains a reasonable volume level.

In summary, we found, as expected, that
changes in the initial random seeds merely gave
rise to idiosyncratic differences in security prices
and volumes. We were thus assured that the

simulated markets were insensitive, in the aggre-
gate, to random seed changes.

Different Ratios of Momentum to Value
Investors. If all market participants use historical
information to form their expectations about future
security returns but use different aspects of history

Table 1. Summary of Investor Template Parameters for the Base Case
Investor
Template No.

Risk-Aversion
Parameter

No. of
Investors

Frequency of
Reoptimization

Return Estimation
Procedure

0 3 1,000 Daily RPS_C

1 2 1,000 Monthly RPS_C

2 2 1,000 Quarterly RPS_C

3 4 1,000 Daily RPS_C

4 3 50 Daily HIST

5 2 50 Monthly HIST

6 2 50 Quarterly HIST

7 4 50 Daily HIST

Notes: This table shows the parameters used in the base case simulation, against which others are
compared. The base case uses eight investor templates, of which four are of the RPS_C type and four are
of the HIST type. Each RPS_C investor template is used by 1,000 investors, and each HIST template is
used by 50 investors. The table also shows each investor’s risk aversion and frequency of reoptimization.

Figure 1. Equally Weighted Market Indices for Three DA Mode Simulation 
Runs with Identical Parameters but Different Initial Seeds
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(e.g., different frequencies of observation), then one
plausible theory is that an active but stable market
will emerge because of sufficient diversity among
the participants.

We tested this theory by assuming that all stat-
isticians used securities’ historical returns to esti-
mate expected returns, variances, and covariances
(i.e., all statisticians were HIST statisticians). We
varied the frequency of return observation (daily,
monthly, or quarterly) and the number of periods
(days, months, or quarters) used in estimating
returns.5 We found that when all statisticians were
HIST statisticians, the price of at least one of the
securities invariably grew exponentially over time.

In effect, all investors were momentum inves-
tors, and they destabilized the market by introduc-
ing positive feedback. When a security’s price
increased, all statisticians raised the expected return
estimate of that security, all portfolio analysts
wanted more of it in their target portfolios, and all
investors attempted to buy it. Traders’ purchase
orders pushed the security’s price up, further
increasing demand for it. With the positive feed-
back inherent in momentum investing, prices
exploded. Conversely, when a security’s price
declined, all investors sold, which put further
downward pressure on it.

Another possible theory is that a stable and
active market will emerge if, in addition to HIST
statisticians, there are other statisticians who base
their estimates on fixed or constant future dollar
returns per share (i.e., RPS_C statisticians). With

RPS_C statisticians (for a given security with a
constant dollar return per share), expected return
declines as share price increases. This is the oppo-
site of HIST statisticians, who raise return expecta-
tions as prices rise. Thus, investors who rely on
RPS_C statisticians will tend to buy more (less) of
a security as its price declines (increases).

We categorized investors as momentum
investors if they used portfolio analysts who obtain
their estimates from HIST statisticians, and we cat-
egorized investors as value investors if they used
portfolio analysts who obtain their estimates from
RPS_C statisticians. Momentum investors can
destabilize markets because their actions tend to
prolong and exacerbate trends. Value investors
stabilize markets; as prices rise, these investors
tend to sell, and as prices fall, they tend to buy.

To see how differing proportions of value
investors and momentum investors affect overall
market behavior, we used the previously described
base case but varied the number of momentum
investors in the simulation. First, we increased the
number of momentum investors so that there was
1 momentum investor for every 10 value investors
(400 momentum investors versus 4,000 value inves-
tors). Prices became more volatile, but markets
were not explosive.

The results changed dramatically when we
further increased the number of momentum inves-
tors so that there was 1 momentum investor for
every 5 value investors (800 momentum investors
versus 4,000 value investors). Figure 3 plots the
daily prices for this case. Here, the price of Security

Figure 2. Total Trading Volume 90-Day Moving Averages for Three DA 
Mode Simulation Runs
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5 reaches $20 million after Day 1,200, and the sim-
ulation terminates. The prices of the other 15 secu-
rities are also plotted in Figure 3, but they are so
small in comparison to that of Security 5 that they
all appear as a single horizontal line near $0. 

Adding even more momentum investors
caused prices to explode even faster. In the explo-
sive cases, share volume started at about the same
level as in the nonexplosive cases but dropped
rapidly (though not monotonically) to much lower
levels. Note, however, that the dollar volume of
trading did not diminish in the explosive cases.

That the market explodes if all investors esti-
mate expected returns by historical average returns
may seem worthy of little note because it is a neg-
ative finding. It tells us how the market should not
be modeled rather than how it should be modeled.
Some, however, would consider the use of histori-
cal returns to be the obvious natural initial hypoth-
esis. This use has a long history in financial theory.
For example, Sharpe (1963) used historical average
returns to estimate expected returns, and Michaud
(1998) argued for the superiority of a resampled
frontier based on historical averages. Even those

who argue for Bayes-Stein estimation methods use
historical averages in their null hypothesis.

Proponents of Bayes-Stein estimators or resam-
pled frontiers argue that their methods produce
better decisions than mean–variance methods that
use historical averages for estimating expected
returns. But they do not argue that if all investors
used methods based only on historical averages,
markets would self-destruct. To our knowledge,
such an argument is not the implication of any prior
simulation or analytical market model. It is the
result of our more literal description of the estima-
tion, optimization, and trading process. It suggests
that a stable, active market requires a predominance
of value investors. If there are too many momentum
investors who buy and sell on the basis of historical
prices, the market becomes unstable and prices of
some securities either explode or plunge to zero.

Trading and Anchoring Rules. In real mar-
kets, security analysis, portfolio construction, and
trading occur asynchronously at discrete-time inter-
vals, with security analysts or statisticians providing
their estimates to portfolio analysts, who provide

Figure 3. Security Prices vs. Time for Simulation with One Momentum 
Investor per Five Value Investors in DA Mode
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target portfolios to traders, who execute trades to
move investors’ portfolios toward their target port-
folios. In the time between security analysis and
trading, changes in the prices of securities may affect
trading goals. Traders need rules to guide them in
deciding whether securities whose prices have
moved should still be traded and, if so, at what
prices to place revised orders. To provide a realistic
representation of a market, an asynchronous dis-
crete-time simulator needs these types of rules.

■ Trading rules. Our trading rules specify
how bid and offer prices for an investor’s orders are
to be formed and adjusted over time. They also
specify the conditions under which bids or offers
must be withdrawn. We describe a trading rule for
offers; an analogous rule applies to bids.

According to the offer trading rule, each trader
sets its own initial offer price, PO, as follows:

(1)

where αS is the particular trader’s user-specified
“sell alpha,” βS is the trader’s “sell beta,” and PC is
the current price of the security. For example,
assume that the security most recently traded at
$200. Then, a trader with an αS of $1 and a βS of 1
would submit a limit order to sell (i.e., set its own
initial offer price) at $201.

If a trade is not executed at or above this price
within a specified period, the trader adjusts the
alpha and beta as follows:

(2)

where ΔαS and ΔβS are the trader’s user-defined
“alpha increment” and “beta increment.” The
trader alters the limit order to sell the security at the
revised price computed from Equation 1 by using
the adjusted alpha and beta values. If a trade is still
not executed within a specified period, the trader
readjusts the alpha and beta to produce a new value
for its offer price. If a trade has not been executed
after a specified number of adjustments, the trader
withdraws the sell order.

Under these trading rules, when traders
review their unexecuted orders, they will either
cancel their buy (sell) orders or increase (decrease)
their own bid (offer) prices. The bids will thus tend
to march upward toward the offers, and the offers
will tend to march downward toward the bids
(until a trade occurs, a bid or offer expires because
of time limitations, or the investor reoptimizes).
The arrival of new orders may exacerbate these
tendencies. For example, if a preponderance of buy
orders is entering the book, sequential transactions
might result in a rising best offer and in transactions
occurring at higher and higher prices. The arrival
of sell orders might have the opposite effect.

■ Anchoring rules. In some situations, price
changes can be extremely rapid. For example, in the
base case, we found that orders are generated every
day for as many as 2,100 investors who reoptimize
daily, plus some for the 2,100 investors who reopti-
mize monthly or quarterly. If these thousands of
participants want to purchase a particular security,
they could issue a series of new buy orders, each of
which establishes a slightly higher bid price. These
orders will notch the price up repeatedly; a security
that sold for $100 at the beginning of the day might
sell for thousands of dollars at the end of the day.

The underlying cause of these rapidly chang-
ing prices is that simulated traders, subject exclu-
sively to the trading rules previously discussed,
consider only the current situation. They do not
recall, for example, that a security whose best offer
is in the thousands of dollars may have sold for
$100 earlier in the day. In contrast, human traders
have a good sense of how much to pay for a secu-
rity. If prices deviate too much from recent levels,
human traders will either revise or withdraw their
bids and offers. We refer to this sense as “anchor-
ing.” Computer algorithms do not automatically
incorporate this sense of anchoring. Without it,
simulated traders can drive a security’s price to
unrealistic levels.6 In our simulations that used
only these trading rules, sometimes with as little as
one momentum investor for every 20 value inves-
tors, the market was explosive. Even with all value
investors and no momentum investors, market
behavior was sometimes unstable.

To approximate a human trader’s sense of how
much realistically to pay for a security, we devised
and incorporated anchoring rules. The simulated
trader follows the trading (i.e., price adjustment)
rules described in Equation 1 and Equation 2 until
the adjustment conflicts with the anchoring rules,
at which point the anchoring rules govern. That is,
the anchoring rules become effective when the
security’s price deviates too far from its recent level.
The user sets parameters that define “recent” and
what prices are considered “too far” from the recent
level. We describe an anchoring rule for offers; an
analogous rule applies to bids.

The offer anchoring rule enables the user to set
the minimum offer price as follows:

(3)

where PR is a recent price (which the user can
specify to be the average price or the minimum
price of the security over a specified number of
recent days), c is a user-specified parameter, and PL
is the average recent price or the standard deviation
of recent prices (as defined by the user). Thus, for
example, the anchoring rule could specify that the

P PO S S C= +α β ,

α α α β β βS S S S S S← + ← +Δ Δ and ,

P P cPO R L, min ,= −
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trader will not sell at a price more than 10 percent
below the 20-day moving average price. This struc-
ture permits flexibility in modeling trader behavior
by allowing the trader to cancel orders when secu-
rity prices “move away.” It also helps reduce the
problem of price explosions and implosions.

Our experience with trading rules confirmed
another advantage of asynchronous discrete-time
simulation. Our initial micro-hypotheses about
trading behavior led to macro-behavior that did not
resemble a real-world market. Our simulation
results indicated that something was wrong with
our assumptions and led us to form better ones.

Capital Market Equilibrium
We have described the use of an asynchronous
discrete-time simulator in its dynamic analysis
mode. Simulation, however, is not limited to
dynamic analysis. Simulation can be used to
estimate parameters of realistic representations of
systems that are too complicated for analytic
approaches to handle. This section gives an
example of how an asynchronous discrete-time
simulator can be used as a parameter estimator. In
particular, we describe an alternative mode of
operation—the capital market equilibrium (CME)
mode—that can be used to find equilibrium
expected returns that are consistent with a given
covariance structure and market portfolio. It allows
the user to find equilibrium expected returns for
any of the great variety of markets that can be
simulated, results that would be impossible to find
by using closed-form analytic techniques.

Black and Litterman (BL 1992) suggested a
procedure to find equilibrium expected returns
that are consistent with a given covariance matrix
and a specified market portfolio. The BL procedure
operates on the assumption that investors live in a
capital asset pricing model (CAPM) world—that is,
they can either borrow all they want at the risk-free
rate or sell short without limit and use the proceeds
to buy long, subject only to a budget constraint that
all their holdings sum to 100 percent. Under these
assumptions, the BL procedure uses “reverse
optimization” to compute equilibrium expected
returns from the given covariance matrix and the
specified market portfolio.

The BL procedure for estimating expected
returns has the following inputs: a covariance
matrix, percentages of the market portfolio invested
in various securities, and views about expected
returns for some, all, or none of the securities. If the
user supplies no views, the BL procedure produces
CME expected return estimates. These estimates are
expected returns that would clear the market if

investors are essentially unconstrained and can
borrow all they want at the risk-free rate.

Under the BL assumptions, the Tobin (1958)
separation theorem applies, and all investor port-
folios lie on the straight capital market line (CML).
Portfolios on the CML consist of various combina-
tions of the riskless security and the same portfolio
of risky securities. In reality, contrary to the
assumptions of the BL procedure, investors are
constrained and cannot borrow all they want.
Because of these constraints, investor portfolios do
not all lie on the CML. Instead, they lie on the
curved efficient frontier at positions determined by
investor risk aversions, and the compositions of the
portfolios of risky securities differ from investor to
investor. In such cases, the market portfolio may
not even be efficient (see Markowitz 2005).

With a simulator used as a parameter estima-
tor, equilibrium expected returns are not subject
to the BL procedure’s unrealistic assumptions
regarding constraints and borrowing. That is, in
the CME mode, the simulator seeks equilibrium
expected returns for markets in which the CAPM
assumptions do not necessarily hold. It allows
users to solve for expected returns for markets with
real-world constraints, including those in which
investors can neither borrow without restriction
nor short without restriction. In other words, it can
be used to seek equilibrium expected returns for
any market that can be simulated. This statement
is subject to two caveats. (1) Not all such markets
are consistent with equilibrium solutions. (2) We
have not explored the convergence properties of
the simulator for all such markets.

In the following sections, we describe how a
simulator can compute CME expected returns and
present a sample case that illustrates the speed with
which a simulator converges toward the market-
clearing expected returns.

Expected Return Estimation Method. The
objective is to find CME expected security returns.
Recall that in the DA mode, the statistician provides
securities’ expected returns. In the CME mode,
securities’ expected returns are instead determined
by the following iterative adjustment procedure: If
the weight of a security in the simulated market
portfolio is above the specified (or target) market
portfolio weight, its expected return is lowered. If
the weight of a security in the current market port-
folio is below the target weight, its expected return
is raised. In response to the expected return
changes, investors change their portfolios in such a
way that the aggregate of all investors’ portfolios
converges toward target market portfolio weights.



50 www.cfapubs.org ©2010 CFA Institute

Financial Analysts Journal

To implement this adjustment procedure, we
introduce four non-negative parameters (a0,a1,
b0,b1). For the i-th security, the iterative adjustment
proceeds as follows: Let δi be the difference
between the weight of the security in the simulated
market portfolio,  (computed from the aggre-
gate of investors’ holdings), and the weight of the
security in the target portfolio, ; that is,

If the simulated market weight is close enough to
the target weight such that

no action is taken. Otherwise, if δi is positive (neg-
ative), the simulator subtracts (adds) 
from (to) the current return estimate for security i.
That is,

The parameters a0 and a1 thus define a toler-
ance band around the target weights, outside of
which adjustment of the return estimates is
deemed necessary, and the parameters b0 and b1
define the degree to which the estimates should be
adjusted. Because this return-estimating proce-
dure is homogeneous, the overall level of the esti-
mates must be fixed arbitrarily. Our method is to
adjust expected returns so as to seek an equilibrium
solution in which the average expected return is
the same as its initial value. Therefore, the market
weights after convergence may differ from the tar-
get weights. Nevertheless, the relative market
weights of all securities (excluding cash) are the
same as their relative target weights.

Case Study. To create a realistic representa-
tion of market participants’ holdings, we created 10
investor templates of 10 investors each that would
place representative portfolios on various parts of
the efficient frontier and not just on the CML.7 With
such placement, the BL assumptions are no longer
satisfied. Therefore, the BL procedure would not
provide correct equilibrium expected returns.

All investors of a given template choose the
portfolio that maximizes U = E – KV for their given
risk aversion, K. In this case, we let K = 0.5, 1.0,
2.0, . . . , 9.0 for the 10 investor templates, respec-
tively. The templates are otherwise identical. We
created eight securities plus cash and stipulated
that the specified market portfolio comprise 8
percent in each of Securities 0 through 5, 4 percent
in Securities 6 and 7, and the remainder in cash.
We assigned arbitrary initial values to the return
estimates, but their mean was 10 percent.8

We used a common constant covariance
matrix. In other words, all entities shared the same
estimated covariance matrix, and this covariance
matrix remained constant over time.

Table 2 shows the results at the end of the run.
Each row of the table represents the equilibrium
portfolio weights (rounded to integer percentage
points) for a particular investor template, and each
column represents each investor template’s hold-
ings of a particular security. The table shows that,
in equilibrium, Investor Template 0 (K = 0.5) holds
a portfolio with 29 percent in Security 1, 28 percent
in Securities 3 and 5, 10 percent in Security 7, and 5
percent in cash. Investor Template 0 holds none of
Securities 0, 2, 4, or 6. 
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δi i
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i
tw w= − .

δi i
ta a w< +0 1 ,

b0 b1wit+

r r b b wi i i i
t← − ( ) +( )sgn .δ 0 1

Table 2. Investor Template Portfolios at the End of the CME Run
Investor 
Template No.

Risk-Aversion
Parameter S0 S1 S2 S3 S4 S5 S6 S7 Cash

0 0.5 0 29 0 28 0 28 0 10 5
1 1 9 20 9 20 9 20 0 11 3
2 2 17 11 17 11 17 11 7 6 3
3 3 16 7 16 7 16 7 9 4 17
4 4 12 5 12 5 12 5 7 3 39
5 5 10 4 10 4 10 4 6 3 50
6 6 8 4 8 4 8 4 5 2 58
7 7 7 3 7 3 7 3 4 2 64
8 8 6 3 6 3 6 3 3 2 69
9 9 5 2 5 2 5 2 3 1 73

Notes: This table shows the equilibrium portfolios for each of the representative investor templates
(0 through 9) at the end of the CME run. The second column shows each investor template’s risk
aversion. The third through eleventh columns give the (rounded) percentage that each investor holds
in each of the eight securities (S0 through S7) and cash.
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In contrast, Investor Template 9 (K = 9) holds a
portfolio with positive positions in all securities.
Thus, the investors in this simulation are on different
segments of the efficient frontier. Their portfolios
cannot be constructed by using a convex combina-
tion of a market portfolio and cash. That is, the
portfolios do not all lie on the CML, and the assump-
tions underlying the BL procedure do not hold.

Figure 4 illustrates the convergence of the sim-
ulated market portfolio toward its target weights.
The weights, plotted monthly, converge within
approximately 300 iterations or 300 days.9 Securi-
ties 0 through 5 each converge to approximately 9
percent of the market. Securities 6 and 7 each con-
verge to approximately 4.5 percent of the market.

Cash converges to an average of about 36 percent of
the market. Note that the ratio of the weights of each
security to their sum (excluding cash) is the same as
that of the target portfolio, as previously described. 

Figure 5 shows the evolution of the return esti-
mates. Consistent with the convergence of the mar-
ket portfolio, the estimates converge within
approximately 300 iterations or days. For Securities
0 through 7, the final estimates are 9.3 percent, 11.0
percent, 9.3 percent, 11.0 percent, 9.3 percent, 11.0
percent, 8.9 percent, and 10.3 percent, respectively.
The average of these estimates is 10 percent, the
same as the average of the initial estimates, as
required by the estimate anchoring rule. 

Figure 4. Convergence of Weights in CME Mode

Notes: The objective of the simulator in the CME mode is to arrive at market-clearing equilibrium
expected returns under realistic conditions. The simulator does so by iteratively adjusting the expected
returns and, consequently, each investor’s desired portfolio weights until the aggregate of all investors’
weights equals the target market portfolio. This figure demonstrates the algorithmic convergence of the
aggregate weights toward the target market weights. In this CME mode example, the investors’ weights
converge toward target market weights within approximately 300 iterations (with one iteration per day). 
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The estimated equilibrium expected returns at
the end of the run are the final results in the CME
mode. These returns are consistent with the given
market portfolio and the given covariance matrix.
Furthermore, they derive from a simulation with
realistic assumptions regarding limits on investors’
ability to borrow.

Conclusion
With asynchronous discrete-time simulation mod-
els, researchers can create realistic dynamic models
of the market. These realistic models can help test
the effects on securities’ prices of such real-world
events as changes in investment strategy, regula-
tory policy, levels of passive portfolio management,
leverage, capital gains taxation, and circuit break-
ers. In addition, the impact of such institutional
structures as minimum tick sizes and the use of
crossing networks can be investigated.

With the use of an asynchronous discrete-time
simulator, we showed that a relatively small pro-

portion of momentum investors can destabilize a
market. When the ratio of momentum investors to
value investors is low, market prices fluctuate but
do not become unstable. As this ratio increases,
price volatility increases. When the ratio is large
enough, the price of at least one security explodes.

We also showed that traders need anchoring
rules. Without anchoring rules, traders who want
to buy a security may drive the security’s price up
to an unrealistically high level; alternatively, trad-
ers who want to sell a security may drive the secu-
rity’s price down to an unrealistically low level.

Finally, we showed that asynchronous discrete-
time simulation can be used to compute CME
returns (i.e., implied equilibrium expected returns)
under realistic constraints on borrowing and short
selling that would make the same problem analyti-
cally intractable.

This article qualifies for 1 CE credit.

Figure 5. Evolution of Return Estimates in CME Mode
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Notes
1. Merton (1990) surveyed continuous-time models in finance.
2. We believe that asynchronous discrete-time models are

superior to synchronous discrete-time models (e.g., the
microscopic simulation model of Levy, Levy, and Solomon
2000), which assume that a market equilibrium price is
computed each period from the demand and supply curves
of all investors on the basis of optimizing or behavioral
considerations similar to those that can be incorporated into
an asynchronous model. But a world in which prices are set
by equilibrium calculations based on all investors’ demand
and supply curves is different from the real world, in which
investors can enter and leave at any time and may or may
not find other investors waiting to trade with them.

3. See Jacobs, Levy, and Markowitz (2004). Our asynchronous
discrete-time simulator that uses these entities is publicly
available on the Jacobs Levy Equity Management website
(www.jlem.com/jlmsim).

4. A full set of base case parameters for the DA mode is
included in documentation available at www.jlem.com/
jlmsim. Levy and Levy (1996) showed the importance of

heterogeneity with respect to sample length. Accordingly,
one HIST statistician used 90 monthly observations for the
mean calculation and 250 daily observations for the covari-
ance calculation. Another HIST statistician used 60 monthly
observations for the mean calculation and 60 monthly
observations for the covariance calculation.

5. We defined a month as equal to 20 days.
6. The “flash crash” of 6 May 2010 illustrates the importance

of anchoring rules. On that day, the Dow Jones Industrial
Average plunged 1,000 points and then rebounded in a
matter of minutes. Some computerized trading algorithms
that lacked anchoring rules sold stocks like Accenture down
to a level of 1 cent before prices rebounded.

7. Assigning only a small number of representative investors
to each template is feasible in this case and saves computa-
tion time.

8. Further details concerning the input parameters we used
for this case study can be found at www.jlem.com/jlmsim.

9. Although the chosen calendar interval was arbitrary, we
equated each iteration to one day.
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